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Abstract

Oncolytic virotherapy (OVT) represents an innovative and promising therapeutic method for
cancer treatment. This approach involves the introduction of oncolytic viruses into the patient,
which are engineered to selectively target and lyse tumor cells. Based on previous mathematical
modelling of oncolytic viruses, we consider a mathematical model that describes the intricate
interactions between the oncolytic virus, cancer cell populations, and the immune system. Our
study includes a detailed qualitative and quantitative analysis of the model to explain why, despite
their promise, oncolytic viruses alone rarely lead to complete and lasting regression of established
tumors in vivo. We use parameter sensitivity analysis to support our findings. Furthermore, we
consider the spatial version of the model in the form of a system of reaction-diffusion equations.
A travelling wave analysis shows an unexpected phenomenon. The solution components do not
necessarily evolve into a single traveling front; rather, they develop into stacked fronts, where each
front propagates at a different speed. We give explicit formulas for these different invasion speeds,
confirm those through numerical simulations, and discuss their significance for OVT.

Keywords: Mathematical oncology, oncolytic virotherapy, spreading speed, travelling Waves,
stacked waves

1 Introduction

Oncolytic virotherapy (OVT) is an emerging cancer treatment in which oncolytic viruses are used to
eradicate tumor cells. One of the most remarkable properties of OVs is their ability to selectively
infect, replicate, and propagate within tumors (Engeland et al., 2020). The first genetically engineered
OV, a herpes simplex virus 1 (HSV-1) mutant with deficient thymidine kinase, was developed in 1991
and used to treat malignant glioma in nude mice. These viruses selectively infect and destroy cancer
cells, often engaging dendritic cells to enhance immune-mediated antitumor responses (Kim et al.,
2015). Although oncolytic viruses (OVs) have advanced into clinical trials, with T-VEC receiving
FDA approval for melanoma, significant challenges remain, including limited viral infection efficiency
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and rapid immune clearance, which must be addressed to fully realize their therapeutic potential
(Mahdie et al., 2022).

The immune system plays a pivotal role in OV–cancer interactions. The immune response was
once considered as a virus replication inhibitor and a limiting factor in virus-cancer interactions.
However, the interactions of cancer, virus and immune response are more complex. The immune
system recognizes and attacks the tumour after the viral infection enhances the visibility of the tumour
to the immune system. Moreover, the release of tumor antigens into the microenvironment, triggered
by virus-induced lysis of cancer cells, helps reverse immune suppression which is often present in a
tumor tissue.

1.1 Paper Outline

In this work, in Section 2, we start with constructing a cancer-virus-immune model to analyze the
complex dynamics that might arise during OV therapy. Inspired by the work of Baabdulla and Hillen
(2024) and Al-Tuwairqi et al. (2020), we incorporate the population of immune cells into the OV model
studied by Baabdulla and Hillen (2024). We investigate the fundamental interactions of immune
response with cancer and with the oncolytic virus. In Section 3, We will first consider the space
independent model without the diffusion terms and we conduct a qualitative analysis of the model
and its steady states. We examine the stability of equilibrium points and we show how the Hopf
bifurcation, known from the OV-model of Baabdulla and Hillen (2024), is affected by the presence of
the immune response. We find that the immune response, if strong enough, will inhibit oscillations.
Next, we perform a comprehensive sensitivity analysis of all model parameters. This analysis highlights
that the growth and decay parameters of the immune response are most sensitive to the treatment
outcome.
In section 4, we put the OV-immune model into a spacial context and include diffusion terms into
the model equations. Of particular interest are the invasion speeds of the model. A travelling wave
analysis shows an unexpected phenomenon. The solution components do not necessarily evolve into
a single traveling front; rather, they develop into stacked fronts, where each front propagates at a
different speed. We see that the faster components advance ahead while slower ones trail behind.
Specficially, we observe a first invasion front as cancer invades the healthy tissue. This is followed by a
viral wave front that catches up with the cancer wave. Finally, an immune response wave front follows
the previous two and might or might not catch up. Instead of a single coherent wave, the system
exhibits a layered structure of stacked traveling fronts. We close with a Conclusion Section 5.

Before presenting our model in Section 2, we first provide a brief overview of some of the previous
works on OVT modelling and stacked invasion fronts.

1.2 Previous Modeling of OV Therapy

One of the first OVT models was introduced by Wodarz (2001). He explored how virotherapy could
be optimized to achieve maximal therapeutic effects. Wodarz also examined three main mechanisms
of action: direct viral killing of tumor cells, immune responses against the virus that indirectly aid
therapy, and the induction of tumor-specific immune responses triggered by the infection. The works
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Wodarz and Komarova (2009), and Komarova and Wodarz (2010) on oncolytic virotherapy have served
as a foundational framework upon which more complex models have been constructed. In 2009, they
started with presenting a broader modeling framework that accounted for different modes of virus
spread (fast vs. slow) and tumor growth kinetics (Wodarz and Komarova, 2009). Their key insight
was that the dynamics of OV therapy can fall into two qualitatively distinct regimes, the fast spread
and the slow spread. They continued their study on OVT dynamics in the following year. In Ko-
marova and Wodarz (2010), they developed a general system of ODEs that is based on the biologically
motivated properties of tumor growth and viral spread. They analyzed how varying these assumptions
would alter the system dynamics and defined conditions under which virus-mediated tumor eradication
would be possible. Their work also underscored the importance of model robustness and cautioned
that many classical modeling results may be artifacts of arbitrary mathematical choices. Tian (2011)
introduced a model comprising three variables, the uninfected and infected cancer cells, and the virus.
His findings indicated that virotherapy success strongly depends on the burst size of the oncolytic
virus. A 3D spatio-temporal model was developed by Pooladvand et al. (2021). They studied the dy-
namics of cancer-virus interactions, specifically focusing on adenovirus therapy within a solid tumor.
In their study, by linking PDE modeling with bifurcation analysis, they revealed deep insights into why
virotherapy often falls short as a standalone treatment, and underlined the limitations of virotherapy
as a monotherapy. Their work inspired the model by Baabdulla and Hillen (2024), who developed a
diffusion model of OVT and extensively studied the temporal and spatial interactions of the virus, and
the cancer cells, but without considering the effect of the immune system. In the absence of OVs, tu-
mors typically establish an immunosuppressive microenvironment that suppresses the body’s immune
response. The introduction of oncolytic viruses, however, triggers pro-inflammatory signaling within
the tumor. There has been extensive research on the role of the immune system in the cancer-virus
interactions, primarily emphasized on its role in mediating these interactions. For instance, Eftimie
et al. (2011) developed an ODE-based model with two immune compartments—lymphoid and pe-
ripheral—to capture the dynamics among uninfected and infected tumor cells, memory and effector
immune cells, and two types of viruses: adenovirus (Ad) and vesicular stomatitis virus (VSV). Their
model successfully replicated experimental tumor growth and immune response patterns, enabling an
exploration of conditions required for sustained tumor elimination. Their analysis centered on com-
plex behaviors such as multistability and multi-instability, revealing that persistent viral presence was
associated with the latter. They also found that viral persistence alone was insufficient for tumor
clearance without a concurrent anti-tumor immune response, underscoring the necessity of combining
viral and immune-mediated effects for effective therapy. In another study, investigated the distinct
contributions of innate and adaptive immunity in OVT by considering the adaptive immune cells as
tumor- or virus-specific. They noted that the innate immune system often acts too rapidly, clear-
ing the virus before it can adequately infect tumor cells and activate a strong anti-tumor immune
response. Consequently, OVT by itself frequently fails to eliminate tumors. To address this, they
modeled a combination therapy involving OVT and a PD-1/PD-L1 checkpoint inhibitor. This ap-
proach mitigated T-cell exhaustion, enhanced immune-mediated tumor destruction, and reduced the
required viral infectivity threshold for successful treatment. Their findings emphasized the importance
of optimal treatment scheduling and dosing, noting that administering a second viral dose too soon
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could inadvertently redirect the immune response toward the virus rather than the tumor, ultimately
compromising therapeutic efficacy.

1.3 Invasion Fronts and Stacked Waves

In 1975 and 1978, the contributions of Aronson and Weinberger (1975, 1978) established the concept
of spreading speed in single-species models with monotone nonlinearities, showing that this speed
coincides with the minimal velocity of traveling waves. Building on this foundation, Weinberger (1982)
later developed a powerful recursive approach to characterize spreading speeds in single-species systems,
providing a versatile tool for analyzing wave propagation in such models. Later the definition of stacked
waves was developed. Feinberg and Terman (1991) showed that if there are multiple distinct, locally
stable euilibrium points and all of the equilibria are nondegenerate, then there must exists a wave train
which connects them. Later Roquejoffre et al. (1996) discussed the convergence of the traveling wave
fronts of a monotone parabolic system toward stacked families of waves. The existence of stacked waves
has been studied by different authors. Iida et al. (2011) showed under certain conditions a cooperative
systems with equal diffusion coefficients propagate at the same speed or they develop into stacked
fronts where each front propagates at a different speed than the others. In the work by Hamelin
et al. (2022), a coupled reaction-diffusion model is used to describe pathogen spread in genetically
diverse plant populations. The interaction of pathogen genotype and plant species resistance let to the
emergence of two successive invasion fronts. The first one dominated by the wild type pathogen and
the susceptible plant population and the latter wave dominated by the resistant plant population and
the resistance-breaking pathogen. Du and Wu (2018) showed in the weak–strong competition case,
two invasive species can spread successfully but at different speeds, leading to spatial segregation of
their populations. They studied two-component reaction–diffusion systems and proved that spreading
occurs with well-defined speeds, showing the intriguing possibility that a single solution can generate
two distinct fronts moving at different speeds. In the work done by Ducrot et al. (2019) on a two-
component reaction–diffusion system, they proved that a single solution can generate two distinct
fronts moving at different speeds. Liu et al. (2021) analyzed a three-species competition-diffusion
system spreading at different speeds and showed that the spreading speed of the slowest species is
dependent on the spreading speeds of the two faster one.

2 The mathematical model

Our model for immune response to oncolytic virotherapy is based on a standard oncolytic virus model
as analyzed recently in Baabdulla and Hillen (2024). We want to incorporate the population of effector
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Variable Value Unit Description

C0 106 cells/mm3 Initial density of uninfected cells

I0 0 cells/mm3 Initial density of infected ells

V0 1.9 × 1010 viruses/mm3 Initial density of virus particles

Y0 104 units/mm3 Initial density of immune cells

Table 1: Initial conditions for model 1 variables.

immune cells Y into their model, so our proposed model is given by

dC

dt
= DC∆C + rC

(
1 − C + I

L

)
− βCV − p1Y C

dI

dt
= DI∆I + βCV − αI − q1Y I (1)

dV

dt
= DV ∆V + αbI − ωV −s1V Y

dY

dt
= DY ∆Y + η1Y C + ζ1Y I − ξ1Y

where C(x, t), I(x, t), V (x, t), and Y (x, t) represent the populations of uninfected cancer cells, infected
cancer cells, free virus particles, and the immune cells respectively. Their corresponding diffusion co-
efficients are denoted by DC , DI , DV , and DY . We have the Laplace operator ∆ as the sum of all
second order derivatives. The second term in equation (1) describes the logistic growth of cancer cells
in the absence of therapy at the rate r with carrying capacity L. The interactions between tumor cells
and virus particles are modeled by the mass action term βCV where cancer cells become infected by
the virus at a rate β. The second term in this equation accounts for the increase in the infected cells.
The lysis of these infected cells is represented by the third term at the rate α. In the third equation,
b represents the burst size of the virus in infected cells, while ω denotes the viral clearance rate. The
effect of the immune response on cancer cells, infected cancer cells, and the virus is modeled through
standard mass action terms with rates p1, q1, and s1, respectively. The last equation of this system
describes the stimulation of the immune system by both uninfected and infected cancer cells with rates
η1 and ζ1, respectively. The immune cell are cleared at rate ξ1 as denoted in the last term.

We consider the system (1) with the initial conditions:

C(0) = N0 > 0, I(0) = I0 = 0, V (0) = V0 > 0, Y (0) = Y0 > 0,

and homogeneous Nuemann boundary conditions on ∂Ω

n · ∇C = n · ∇I = n · ∇V = n · ∇Y = 0. ∀x ∈ ∂Ω.
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2.1 Non-dimensionalization

To simplify our analysis, we apply the non-dimensionalization method by considering

Ĉ = C

L
, Î = I

L
, V̂ = βV

r
, Ŷ = Y

L
, t̂ = τt, and x = x

√
τ

DV
.

After dropping the hats, we obtain the non-dimensionalized system:

dC

dt
= Dc∆C + C (1 − C − I) − CV − pY C

dI

dt
= Di∆I + CV − λI − qY I

dV

dt
= ∆V + θI − aV −sV Y (2)

dY

dt
= Dy∆Y + ηY C + ζY I − ξY

where

p = p1L

r
, q = q1L

r
, s = s1L

r
a = α

r
, θ = αbβL

r2 , γ = ω

r
, η = η1L

r
,

ζ = ζ1L

r
, ξ = ξ1

r
,

and

Dc = DC

DV
, Di = DI

DV
, Dy = DY

DV
.

The parameter values before and after non-dimentionalization are given in Tables 2 and 3 respectively.
The parameter values used in our simulations are chosen from different sources. Based on the work
by Lodish (2013), Pooladvand et al. (2021) considered the carrying capacity of a solid tumor of radius
1 mm is about L = 106 cells per mm3. We also chose this value as the initial density of uninfected
tumor cells. In the experiments carried out by Kim et al. (2006) on adenovirus in the glioblastoma
U343 cell line, the tumor growth rate was estimated to be approximately 0.3 per day. We will use
this value in our analysis. We used the same parameter values for L, β, ω, and b, together with the
initial condition for the adenovirus load (V0 = 1.9×1010 virions per mm3), as reported in the model of
Baabdulla and Hillen (2024), where these parameters were associated with a reovirus and applied in
the context of breast cancer. The remaining parameters used in our model are estimates of parameters
in the model by Al-Tuwairqi et al. (2020). The parameters concerning the virus in their model for
the glioma treatment were derived from the study by Friedman et al. (2006), which focused on the
mutant herpes simplex virus 1 (hrR3). The immune model by Al-Tuwairqi et al. (2020) incorporated
components of the innate immune response, including natural killer cells and cytokine activity.
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Parameter Description Baseline Value Units Source
DC Diffusion coefficient of susceptible cells 0.006 mm2 per day Baabdulla and Hillen (2024)
DI Diffusion coefficient of infected cells 0.006 mm2 per day Baabdulla and Hillen (2024)
DV Diffusion coefficient of virus 0.24 mm2 per day Baabdulla and Hillen (2024)
DY Diffusion coefficient of immune cells 0.006 mm2 per day Baabdulla and Hillen (2024)
r Growth rate of uninfected tumor 0.3 (day)−1 Baabdulla and Hillen (2024)
L Tumor carrying capacity 106(106 − 108) cells Baabdulla and Hillen (2024)
β Infection rate of uninfected tumor cells by OV 1.5 × 10−9 (PFU .day)−1 Baabdulla and Hillen (2024)
p1 Killing rate of tumor by immune cells 0.48 × 10−6 (cell .day)−1 Al-Tuwairqi et al. (2020)(estimated)
α Death rate of infected tumor cells 1 (day)−1 Baabdulla and Hillen (2024)
q1 Killing rate of infected tumor by tumor-specific immune 0.63 × 10−6 (cell .day)−1 Al-Tuwairqi et al. (2020)(estimated)
b Viruses released by lysed infected tumor cell 3500 (PFU)(cell)−1 Baabdulla and Hillen (2024)
ω Virus-induced immune response rate 4 (day)−1 Baabdulla and Hillen (2024)
s1 Killing rate of virus by immune cells 0.21 × 10−6 (cell .day)−1 Al-Tuwairqi et al. (2020)(estimated)
η1 Stimulation of immune response by uninfected cells 3.84 × 10−7 (cell .day)−1 Al-Tuwairqi et al. (2020)(estimated)
ζ1 Stimulation of immune response by infected cells 7.8 × 10−7 (cell .day)−1 Al-Tuwairqi et al. (2020)(estimated)
ξ1 clearance rate of immune cells 0.036 (day)−1 Al-Tuwairqi et al. (2020)

Table 2: Baseline parameter values for the base model (1) and their corresponding references.

Parameter Description Baseline Value
Dc Diffusion coefficient of susceptible cells 0.025
Di Diffusion coefficient of infected cells 0.025
Dy Diffusion coefficient of immune cells 0.025
θ Effective viral production rate 58.33 (16.6 − 500)
p Killing rate of tumor by immune cells 1.6
q Killing rate of infected tumor by tumor-specific immune cells 2.1
a infected death rate 3.33
γ Virus clearance rate 13.33
s Killing rate of virus by immune cells 0.71
η Stimulation of immune response by uninfected cells 1.28
ζ Stimulation of immune response by infected cells 2.6
ξ clearance rate of immune cells 0.16

Table 3: Parameters of the non-dimensional model 2.
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3 Analysis of the Kinetic Part

We first examine the aforementioned model in the spatially homogeneous scenario, where all spatial
dependencies are disregarded. Consequently, the system governing C(t), I(t), V (t), Y (t) becomes:

dC

dt
= C (1 − C − I) − CV − pY C

dI

dt
= CV − aI − qY I

dV

dt
= θI − γV −sV Y (3)

dY

dt
= ηY C + ζY I − ξY.

System (3) has five equilibria: The “disease-free” equilibrium is E0 = (C, I, V, Y ) = (0, 0, 0, 0), the
“cancer-only” equilibrium is given by E1 = (1, 0, 0, 0), and the “immune-free” equilibrium has the
coordinates

E2 = (C2, I2, V2, 0) =
(

aγ

θ
,

γ(θ − aγ)
θ(γ + θ) ,

θ − aγ

γ + θ
, 0
)

, (4)

which is only biologically relevant if and only if θ > γλ. We denote the “immune-cancer-only” equi-
librium as

E3 = (C3, 0, 0, Y3) =
(

ξ

η
, 0, 0,

1 − ξ
η

p

)
, (5)

which is biologically relevant if and only if η > ξ. The “coexistence” equilibrium is E4 =
(
C̃, Ĩ, Ṽ , Ỹ

)
which is a nonzero coexistence point that can not be expressed explicitly due to complexity. To
demonstrate the existence of E4 , we will use numerical methods. We simplify the system (2) by
assuming that all populations are nonzero. First, we set all four equations to zero. From the fourth
equation of system (2), we cancel Y , isolate C, and obtain

C = −ζ

η
I + ξ

η
. (6)

From the second equation of systm (2), isolating I gives

I = γ

θ
V + sY V

θ
. (7)

Substituting (7) into (6), we rewrite C as

C = ξ

η
− ζγ

ηθ
V − ζs

ηθ
Y V. (8)
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Next, canceling C from the first equation of system (2) yields

1 − C − I − V − pY = 0. (9)

By substituting (7) and (8) into (9), we obtain an equation in terms of two variables, V and Y :

1 − ξ

η
+ ζγV

ηθ
+ ζsY V

ηθ
− γ

θ
V − sY V

θ
− V − pY = 0. (10)

Similarly, substituting (7) and (8) into the third equation of the system (2) gives another relation in
V and Y . Canceling V from both sides yields

ξ

η
− ζγV

ηθ
− ζsY V

ηθ
− aγ

θ
− asY

θ
− qγY

θ
− qsY 2

θ
= 0. (11)

Equations (10) and (11) form a system with two variables. Numerical solutions indicate that this
system admits at least one positive solution, establishing the existence of the coexistence point E4.
However, due to the complexity of the equations, explicit expressions cannot be derived, and uniqueness
cannot be demonstrated analytically.

The equilibrium points E0, E1, and E2 correspond to the three equilibria of the OV model of
Baabdulla and Hillen (2024) and their stability turns out to be the same as in the simpler model. In
the E2 state, the tumor persists while the immune population has been driven to extinction. In the
equilibrium point E3, both infected cells and free viruses tend to zero. This is caused by the immune
system responding too quickly to the presence of viruses and infected cells; thus, the immune cells
destroy the virus and the infected cells but leave tumor cells behind.
A useful and essential measure in any disease modeling is the basic reproduction number R0 (Roberts,
2007; Heesterbeek, 2002; Heffernan et al., 2005). The basic reproduction number refers to the expected
number of secondary infections resulting from a single primary infection. In virotherapy, primary and
secondary infections refer to individual tumor cells infected by the oncovirus. Using the framework
of van den Driessche and Watmough (2002), we compute the reproduction number as spectral radius
of the next generation matrix FV −1 (Bianchi et al., 2019). The operators F and V describe new
infections and transitions between infected compartments, respectively. The matrices F and V are the
corresponding linearizations at the disease free equilibrium E1. From model (3) have:

F =


0

CV

θI

0

 , V =


(1 − C − I) − CV − pY C

aI + qY I

γV +sV Y

−ηY C − ζY I + ξY

 ,

F = D(F(E1)) =


0 0 0 0
0 0 1 0
0 0 θ 0
0 0 0 0

 , V = D(V(E1)) =


1 1 1 p

0 0 a 0
0 γ 0 0
0 0 0 ξ

 .
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We evaluate the matrix FV −1 and its spectral radius gives us the basic reproduciton number R0

FV −1 =


0 0 0 0
0 0 1

a 0
0 θ

γ 0 0
0 0 0 0

 and ρ(FV −1) = R0 = θ

aγ
. (12)

This shows that E1 is only stable when R0 < 1 which is equivalent to when θ < aγ.
We summarize the stability in the following result.

Theorem 1. For our base immune-oncolytic virus model (2), we have the following results:

• The basic reproduction number R0 is given by θ

aγ
,

• E0 is always a saddle, and when the basic reproduction number R0 is less than one or equivalently
θ < aγ, E1 is locally asymptotically stable and E2 is not biologically relevant,

• When R0 is greater than one, E1 becomes unstable and the coexistence steady state arises through
a transcritical bifurcation at θt = aγ, where E2 becomes biologically relevant,

• E2 is locally asymptotically stable when

θ >
γ (ζ + ηa − ξ) + γ

√
(ζ + ηa − ξ)2 + 4aξ(ζ − ξ)

2ξ
, (13)

and

θ > θt = aγ and κ(θ) > 0, (14)

where
κ(θ) = −θ3 + mθ2 + γmθ + aγ3, and m = (a + γ)2 + a(γ + 1),

• There exists a bifurcation value θH > θt with κ(θH) = 0 such that the system undergoes a Hopf
bifurcation at E2,

• E3 is locally asymptotically stable only if we have

η

ξ

(
a + q

(
1 − ξ

η

p

))(
γ + s

(
1 − ξ

η

p

))
> θ. (15)

Proof. The Jacobian of the system (3) at a general equilibrium (C̄, Ī, V̄ , Ȳ ) is given by
1 − 2C̄ − Ī − V̄ − pȲ −C̄ −C̄ −pC̄

V̄ −a − qȲ C̄ −qĪ

0 θ −γ − sȲ −sV̄

ηȲ ζȲ 0 ηC̄ + ζĪ − ξ

 . (16)
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Part 1. At E0 = (0, 0, 0, 0), (16) reduces to
1 0 0 0
0 −a 0 0
0 θ −γ 0
0 0 0 −ξ

 ,

which shows that E0 is a saddle.
Part 2. At E1 = (1, 0, 0, 0), the Jacobian matrix (16) reduces to

−1 −1 −1 −p

0 −a 1 0
0 θ −γ 0
0 0 0 η − ξ

 .

The characteristic equation is given by

(λ + 1) (λ + η + ξ) ((a + λ) (γ + λ) − θ) = 0

Thus, the eigenvalues are given by λ1 = −1, λ2 = η − ξ and

λ3,4 = −(a + γ) ±
√

(a − γ)2 + 4θ

2 .

This gives that E1 is only stable if ξ > η and (γ + a)2 > (γ − a)2 + 4θ. The second condition is
equivalent with 1 > θ

γa = R0.
So far we have shown E0 is always a saddle and when the condition aγ

θ
= R0 < 1 is satisfied, E1 is

locally asymptotically stable and E2 is not biologically relevant. However, when R0 > 1, E1 becomes
unstable and E2 becomes biologically relevant.
Part 3. To analyze the stability of E2, we set C2 = aγ

θ
, so we rewrite E2 as

(
C2,

γ(1 − C2)
θ + γ

,
θ(1 − C2)

θ + γ
, 0
)

.

We have that the Jacobian matrix (16) at this point is given by

−C2 −C2 −C2 −pC2
θ(1 − C2)

θ + γ
−a C2 −qγ(1 − C2)

θ + γ

0 θ −γ −sθ(1 − C2)
θ + γ

0 0 0 ηC2 + ζγ(1 − C2)
θ + γ

− ξ


(17)
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and so the characteristic equation is given by

(
ηC2 + ζγ(1 − C2)

θ + γ
− ξ − λ

) ∣∣∣∣∣∣∣∣∣
−C2 − λ −C2 −C2
θ(1 − C2)

θ + γ
−a − λ C2

0 θ −γ − λ

∣∣∣∣∣∣∣∣∣ = 0. (18)

We rewrite this equations as(
λ + ξ − ηC2 − ζγ(1 − C2)

θ + γ

)(
λ3 + P2λ2 + P1λ + P0

)
= 0, (19)

where

P2 = C2 + a + γ,

P1 = C2

(
a + γ + θ (1 − C2)

θ + γ

)
, (20)

P0 = θC2 (1 − C2) .

In order to have that E2 is locally asymptotically stable, we need to show that we have negative real
eigenvalues or complex eigenvalues with negative real parts. Let us first disregard the first factor and
focus only on the eigenvalues from the second factor (19). We want to analyze the second term to
determine the signs of the eigenvalues. We want to show that the polynomial

λ3 + P2λ2 + P1λ + P0 = 0,

has only real negative eigenvalues, or complex eigenvalues with negative real parts, provided that
θ > aγ and κ(θ) > 0 where κ(θ) = −θ3 + mθ2 + γmθ + aγ3 and m = (a + γ)2 + a(γ + 1). To see this,
we apply the Routh-Hurwitz criterion (Edelstein-Keshet, 2005 - 1988). Based on this criterion for the
third order polynomial

λ3 + P2λ2 + P1λ + P0 = 0

to have that all eigenvalues are either real and negative, or complex with negative real parts, we should
have

P0 > 0, P2 > 0, and P2P1 − P0 > 0. (21)

Since from the beginning we had the assumption C2 > 1, we clearly have P2 > 0 and P0 > 0. To check
the other condition, we substitute in the values in the P2P1 − P0 and by noting that C2 = aγ

θ , we get
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P2P1 − P0 = (C2 + a + γ)
(

C2

(
a + γ + θ (1 − C2)

θ + γ

))
− θC2 (1 − C2) (22)

= C2

[
(a + γ)(C2 + a + γ) + θ(1 − C2)(C2 + a − θ)

θ + γ

]
(23)

= aγ

θ2(θ + γ)k(θ) (24)

where

κ(θ) = −θ3 + mθ2 + γmθ + aγ3 and, m = (a + γ)2 + a(γ + 1) > 0. (25)

Since aγ

θ2(θ + γ) > 0, to have the condition P2P1 − P0 > 0 satisfied, we should have

κ(θ) > 0. (26)

Now we need to analyze the first term in (19) to find all the conditions under which E2 is locally
asymptotically stable. To have this, we need

λ4 = ηC2 + ζγ(1 − C2)
θ + γ

− ξ < 0.

We rewrite this as

ηaγ

θ
+ ζγ(1 − C2)

θ + γ
− ξ = ηaγθγ2aη + ζγθ − ζγ2a

θ(θ + γ) − ξ < 0.

This gives us

ξθ2 + θ (ξγ − ζγ − ηaγ) + aγ2(ζ − ξ) < 0

and so to have the condition (26) satisfied, we need

θ >
γ (ζ + ηa − ξ) + γ

√
(ζ + ηa − ξ)2 + 4aξ(ζ − ξ)

2ξ
. (27)

We showed that the condition (21) is satisfied, thus to have E2 locally asymptotically stable, we need
the inequality (27) to be satisfied as well.

Part 4. We now want to show that the system (3) undergoes a Hopf bifurcation at θH for some
θH > θt for E2. We again consider the characteristic equation (19). The first factor is always real
valued, hence for a Hopf bifurcation, we disregard it and focus on the second part.

λ3 + P2λ2 + P1λ + P0 = 0
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with P2, P1, and P0 values given in (20). We define H(θ) as

H(θ) := P2P1 − P0 = aγ

θ2(a + γ)κ(θ) (28)

with κ(θ) defined in (25). We apply Liu’s criterion (Liu, 1994; Jahedi et al., 2021), which states that,
assuming P0 ̸= 0, a Hopf bifurcation occurs at θ = θH for system (2) whenever

H(θH) = 0 and dH

dθ

∣∣∣∣
θ=θH

̸= 0.

Since the multiplicative factor of H(θ), aγ, is nonzero, it follows that H(θ) = 0 if and only if κ(θ) = 0.
By Descartes’ rule of signs (Curtiss, 1918), the third order polynomial κ(θ) has exactly one positive
real root, as there is only one sign variation among its coefficients. Considering κ(−θ), there are two
sign changes, which implies that κ(θ) has either zero or two negative real roots. Thus, there exists a
unique positive solution θ = θH such that

H(θH) = κ(θH) = 0.

Moreover, since θH is the unique positive root of κ(θ) and the leading-order term of κ(θ) is negative,
we conclude that κ(θ) < 0 for all θ > θH . Consequently, because H(θ) in Equation (28) has a positive
multiple, aγ > 0, we also have H(θ) < 0 for all θ > θH . Finally, from (26), we know that κ(θ) > 0,
which implies θt < θH .

Part 5. To analyze the stability of E3 = (C3, 0, 0, Y3) , we have the Jacobian matrix given by
−C3 −C3 −C3 −pC3

0 −a − qY3 C3 0
0 θ −γ − sY3 0

ηY3 ζY3 0 0

 . (29)

The characteristic equation is given by
−C3 − λ −C3 −C3 −pC3

0 −a − qY3 − λ C3 0
0 θ −γ − sY3 − λ 0

ηY3 ζY3 0 −λ


= [(−a − qY3 − λ) (−γ − sY3 − λ) − C3θ] [−λ (−C3 − λ) + pC3ηY3] = 0. (30)

Considering the cancer-immune equilibria E3 = (C3, 0, 0, Y3) (5), we substitute the values of C3 and
Y3 into the Equation (30). The second factor gives us

λ2 + ξ

η
λ + ξ

(
1 − ξ

η

)
= 0. (31)
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The sum of the roots of this quadratic equation is given by the negative of the coefficient of the linear
term, i.e. − ξ

η , which is strictly negative. The product of the roots of this equation is equal to the

constant term ξ

(
1 − ξ

η

)
, which is positive since we have ξ < η. This means that if this quadratic

equation has real roots, they are negative. Thus, the eigenvalues from this factor of the characteristic
equation (30) would be negative.

We follow the same approach for the first factor of (30). After substituting the values of C3 and
Y3 into the first factor of Equation (30), we obtain

λ2 + λ

(
a + q

(
1 − ξ

η

p

)
+ γ + s

(
1 − ξ

η

p

))
+
(

a + q

(
1 − ξ

η

p

))(
γ + s

(
1 − ξ

η

p

))
− θ

ξ

η
= 0. (32)

Similarly, the sum of the roots of this equation is equal to the negative of the coefficient of the linear
term, i.e.

−

(
a + q

(
1 − ξ

η

p

)
+ γ + s

(
1 − ξ

η

p

))
, (33)

which has a negative value. If real roots exist, then for them to be negative we need to have their
product positive. To have this condition satisfied, we require the constant term of the Equation (32)
to be positive, that is

η

ξ

(
a + q

(
1 − ξ

η

p

))(
γ + s

(
1 − ξ

η

p

))
> θ. (34)

Hence E3 is locally asymptotically stable only if we have (15).

We also consider η as a bifurcation parameter and for low virus concentration we find a transcritical
bifurcation in η.

Lemma 2. Assume the virus concentration V and the infected population I are close to 0. Then by
increasing η we obtain a transcritical bifurcation between E1 and E3 at η = ξ.

Proof. To study the transcritical bifurcation between the equilibria E1 = (1, 0, 0, 0) and E3 = (C3, 0, 0, Y3),
we set I = 0 and V = 0. In this case, system (2) reduces to

C ′ = C(1 − C) − pCY, (35)

Y ′ = ηCY − ξY.

The steady states of this reduced system are: the trivial equilibrium e0 = (0, 0), the cancer-only

equilibrium e1 = (1, 0), and the coexistence equilibrium e2 = (c3, y3) =
(

ξ

η
,

1 − ξ
η

p

)
. These equilibria

are consistent with those found in the full system (2) when the infected population I and the virus
population V are set to zero.
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The Jacobian of system (35) at a steady state (C̄, Ȳ ) is

J(C, Y ) =
(

1 − 2C̄ − pȲ −pC̄

ηȲ ηC̄ − ξ

)
. (36)

At the trivial equilibrium (0, 0), the system is always a saddle. At the cancer-only equilibrium
(1, 0), the Jacobian is −1 −p

0 η − ξ

 , (37)

which shows that (1, 0) is stable when ξ > η. The condition ξ = η, therefore, defines a bifurcation
point.
At the coexistence equilibrium e2 = (c3, y3), the Jacobian becomes−c3 −pc3

ξy3 0

 . (38)

The eigenvalues are given by

λ1,2 = −c3 ±
√

c2
3 − 4pξc3y3

2 =
− ξ

η ±
√

ξ2

η2 − 4 ξ2

η

(
1 − ξ

η

)
2 .

For ξ < η, the real parts of the eigenvalues are negative, while for ξ > η, the equilibrium e2 becomes
a saddle. Hence, a transcritical bifurcation occurs between e1 and e2 at ξ = η.

In Figure 1, we plot the curve

κ(θ) = −θ3 + mθ2 + γmθ + aγ3, and m = (a + γ)2 + a(γ + 1), (39)

using the parameters values from Table 3. We have indicated the points θt = aγ and the Hopf
bifurcation value θH on this curve. Their corresponding values are 44.4 and 338.4, respectively.

In Figure 2, we illustrate the stability behavior of system 2 for various values of θ and η, with θ

ranging from 30 to 500 and η from 0 to 2. Each colored dot represents the stability type of a steady
state within the given parameter region. A red dot indicates that the cancer-only equilibrium E1 is
stable for the corresponding range of parameter values. Green dots mark the regions where E3 is
stable, while light blue denotes the stability of E2. For θ values greater than the Hopf bifurcation
threshold θH , we have the stable limit cycles around E2, shown in dark blue. Yellow dots represent the
stability of E4, and for certain parameter values, we observed numerically stable limit cycles around
E4, which are illustrated in orange.

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2025. ; https://doi.org/10.1101/2025.09.04.674336doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.04.674336
http://creativecommons.org/licenses/by/4.0/


Figure 1: The κ(θ) curve of Equation (25), with the parameter values from Table 3 the bifurcation
values θt = 44.4 and θH = 338.45 are indicated on the curve.

Using inequality (34), we plot the curve θ1, given by

θ1(η) = η

ξ

(
a + q

(
1 − ξ

η

p

))(
γ + s

(
1 − ξ

η

p

))
. (40)

For all η values above the θ1 curve (shown as a pink line), the equilibrium E3 is stable up to the
Hopf Bifurcation value θH . These points are indicated by green dots. Above the line θ1(η) the virus
is cleared and we end up with a cancer-immune equilibrium. Hence to have any hope of successful
viro therapy, we need to be below the line θ1(η). Similarly, from inequality (27), we plot the curve θ2,
defined as

θ2(η) =
γ (ζ + ηa − ξ) + γ

√
(ζ + ηa − ξ)2 + 4aξ(ζ − ξ)

2ξ
. (41)

Below the θ2 curve (shown as a purple line), for θ between 30 and θH = 338.45, E2 is stable, indicated
by light blue dots. After the Hopf bifurcation values, shown as a dashed line, the point under the θ2 line
numerically show a stable limit cycle around E2, marked by darker blue dots. In the region between
the θ1 and θ2 curves, the system exhibits stability of the equilibrium E4, represented by yellow dots.
For higher θ values within this region, oscillatory dynamics appear around E4; the exact transition
threshold can not be determined explicitly, and these points are shown in orange.

We select a representative point from each stability region and simulate the system dynamics for
these cases, as shown in Figures 3 and 4. The selected points are marked with squares in Figure 2
and are plotted in Figures 3 and 4 using their corresponding stability colors. Figures 3 and 4 present
three-dimensional dynamics of system 2 with the variables C, V , and Y on the axes. We do not show
I as it closely follows the V dynamics. In Figure 3(a), we show the dynamics of system 2 for η = 0 and
θ = 44.4. For these parameter values, Figure 2 indicates that the cancer-only equilibrium E1 is stable,
and hence the system converges to (1, 0, 0, 0). The corresponding simulation of population dynamics is
shown in Figure 3(b). In Figure 3(c), we observe the dynamics of system 2 for η = 0.15 and θ = 300.
For these parameter values, from what we see in Figure 2, we have that the immune-free equilibrium
E2 is stable, and the system converges to this point. Its corresponding population dynamics simulation
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Figure 2: Stability behavior of system (1) over a range of θ and η values. The dashed line indicates
the bifurcation value θH for the equilibrium E2. The equations given in (40) and (41) are represented
by the pink and blue curves. The squared markers highlight parameter values corresponding to the
dynamics shown in Figures 3 and 4.

is shown in Figure 3(d). Keeping η = 0.15, after θ passes the Hopf bifurcation value θH , for θ = 400
we see in Figure 3(e) a stable limit cycle around E2. We see the corresponding oscillations in Figure
3(f). The system converges to the cancer-immune-only equilibria for η = 1.28 and θ = 400, as we
observe in Figure 4(a), and the population dynamics simulations in Figure 4 (b). Although we can not
have the coexistance equilibrium point E4 explicitly, from the simulations we observe that the system
converges to a non-zero equilibrium point for η = 1 and θ = 400, if both the three-dimensional and
population dynamics simulations in Figures 4(c) and 4(d). A stable limit cycle around E4 is observed
for η = 0.7 and θ = 400 in Figure 4(e) and the oscillatory behavior in Figure 4 (d).

3.1 Sensitivity Analysis

We perform a parameter sensitivity analysis with the base value parameters from Table 3. We use
this analysis to identify the parameters that most significantly contribute to treatment efficacy. The
relative sensitivity of variable C to the parameter p is defined as (Ingalls, 2013)

S(C|p) = ∆C/C

∆p/p
= C(p + ∆p) − C(p))

C(p)
p

∆p
. (42)

The relative sensitivity relates the size of a relative perturbation in p to a relative change in C. We
vary each parameter by 5% of its value, and we obtain the sensitivity graph as in Figure 5. The
sensitivity analysis highlights the crucial role of the immune system in determining the success of
oncolytic virotherapy (OVT). While the parameter θ has a relatively strong influence compared to
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(a)
(b)

(c) (d)

(e) (f)

Figure 3: Dynamics of the system (3) for various values of θ and η. The values used for each simulation
are shown in the legends of the left-hand plots. The corresponding two-dimensional time dynamics,
with parameter values, are indicated on the right. (a) and (b): the equilibrium E1 is stable. (c) and
(d): the equilibrium E2 is stable for θ < θH , prior to the Hopf bifurcation. (d) and (e): A stable limit
cycle emerges around E2 for θ > θH .
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Dynamics of the system (3) for various values of θ and η. The values used for each simulation
are shown in the legends of the left-hand plots. The corresponding two-dimensional time dynamics,
with parameter values, are indicated on the right. (a) and (b): the equilibrium E3 is stable. (c) and
(d): the equilibrium E3 is stable, prior to the Hopf bifurcation. (d) and (e): A stable limit cycle
emerges around E4.
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Figure 5: Sensitivity analysis of the final value of C(t) at t = 150 under a 5% change in the model
parameter values.

most other parameters, its effect is less pronounced than that of η and ξ. The effectiveness of OVT
depends significantly on these two parameters. This suggests that therapeutic strategies should aim
to modify parameters of highest sensitivity that most strongly improve treatment outcomes, i.e. the
immune stimulation η, immune exhaustion ξ and the effective production rate of the virus, θ.

They can be modified through strategies such as combining OVT with immunotherapies. As future
work, we propose to investigate which combination strategies are most effective in enhancing treatment
outcomes.

4 Travelling Fronts and Stacked Waves

In this section, we come back to the spatial model (2) and analyse the invasion speeds of the various
components. The model in one dimension reads

Ct = DcCxx + C (1 − C − I) − CV − pY C

It = DiIxx + CV − aI − qY I

Vt = Vxx + θI − γV −sV Y (43)

Yt = DyYxx + ηY C + ζY I − ξY.

We first simulate the travelling waves in Matlab to observe their behaviour over time. We choose
parameter values from Table 3 and diffusion coefficients as Dc = Di = Dy = 0.025. The initial
conditions for I and V are set at E2, with Y chosen to be equal to a small value, 0.18, for x between
0 and 4 on the left boundary, and zero elsewhere. The uninfected cancer population C is initialized at
its carrying capacity up to x = 30, and 0 elsewhere, representing the invasion of cancer into the spatial
domain. This setup allows us to illustrate the invasion of cancer into the healthy domain x > 30. As
shown in Figure 6, the leading edge of the wave represents the invasion of uninfected cancer cells (C)
into healthy tissue. This is followed—at a higher speed—by the virus and infected cells overtaking
the uninfected population, reducing the cancer population, until it reaches the wave front, driving
the system toward the steady state E2, where the immune population is at zero. Further back, at
a much slower speed, the immune system begins invading the other three populations. Over time,
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Figure 6: The traveling waves of the four populations invading to the right. The waves are captured
at t = 20, 40, 60, and 80.

it reduces both the virus and infected cell populations to zero, ultimately settling into a coexistence
state with a nonzero cancer population, corresponding to the steady state E3. We performed many
more simulations (not shown here) and this behavior is quite robust. We clearly identify a sequence of
invasion fronts that all move at different speeds, i.e. stacked waves. We analyse these stacked waves
by looking at the linear invasion speeds of the system for each of the equilibria in turn.

4.1 Invading the Disease-Free Equilibrium E0

To compute the invasion wave front of the cancer into the disease-free equilibrium, we simply consider
the cancer-only model

Ct = DcCxx + C(1 − C),

with boundary condition

C(−∞, t) = 1, and C(∞, t) = 0.

This is the famous Fisher-KPP equation (Vries et al., 2006) and the invasion speed is well known and
given by

c∗
c = 2

√
Dc. (44)
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Using the parameter values from Table 3, Equation (45) gives us the minimum speed value

c∗
c = 2

√
0.025 ≈ 0.3162. (45)

We show this invasion front in Figure 8a.

4.2 Invading the Cancer-Only Equilibrium E1

To consider the invasion of the virus population into an established tumor, we linearize the system in
one dimension at the homogeneous steady state (1, 0, 0, 0)

Ct = DcCxx − C − I − V − pY

It = DiIxx − aI + V

Vt = Vxx + θI − γV (46)

Yt = DyYxx + ηY − ξY.

We now make an explicit ansatz of an exponentially decaying self-similar wave solution by setting
z = x − ct as

(C(x, t), I(x, t), V (x, t), Y (x, t)) =
(
ϵce−λz, ϵie

−λz, ϵve−λz, ϵye−λz
)

.

Here, c denotes the wave speed, and λ the exponential decay rate at the wave front. Substituting this
ansatz into system (46), we get

cλϵce−λz =Dcλ2ϵce−λz − ϵce−λz − ϵie
−λz − ϵve−λz − pϵye−λz,

cλϵie
−λz =Diλ

2ϵie
−λz − aϵie

−λz + ϵve−λz,

cλϵve−λz =λ2ϵve−λz + θϵie
−λz − γϵve−λz,

cλϵye−λz =Dyλ2ϵce−λz + (η − ξ) ϵye−λz,

which, after simplification, is written as a linear system
Dcλ2 − cλ − 1 −1 −1 −p

0 Diλ
2 − cλ − a 1 0

0 θ λ2 − cλ − γ 0
0 0 0 Dyλ2 − cλ + η − ξ




ϵc

ϵi

ϵv

ϵy

 =


0
0
0
0

 . (47)

The characteristic equation of the matrix (47) is

(
Dcλ2 − cλ − 1

) [(
Diλ

2 − cλ − a
) (

λ2 − cλ − γ
)

− θ
] [(

Dyλ2 − cλ + η − ξ
)]

= 0. (48)

For the first factor of Equation (48), we set

Π(c, λ) = Dcλ2 − cλ − 1 = 0. (49)
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Figure 7: The blue ball corresponds to the minimum decay rate and minimum wave speed of the virus
particles.

By calculation dΠ
dλ

= 0, isolating for c′, and setting it equal to zero, we obtain the minimum value for
c. Plugging this value back to the Equation (49) yields −Dcλ2 −1 = 0. For no value of λ, the equation
can be satisfied and it shows that this factor does not give us any suitable minimum wave speed. We
now focus on the second factor of Equation (48). We let

Φ(c, λ) =
(
Diλ

2 − cλ − a
) (

λ2 − cλ − γ
)

− θ.

We set d
dλ Φ(λ, c(λ)) = 0 which is given by

(2λDi − c − c′λ)(λ2 − cλ − γ) + (2λ − c − c′λ)(Diλ
2 − cλ − a) = 0. (50)

We solve for c′ and we obtain

c′ = Ψ(λ, c(λ))
λ3(−Di − 2) + λ(a + γ) , (51)

where

Ψ(λ, c(λ)) = 4Diλ
3 + 3λ2(−cDi − c) + 2λ(−Diγ + c2 − a) + (cγ + ca).

The minimum wave speed c∗
v is the value where Φ = 0 and Ψ = 0. We show the functions Φ(θ) and

Ψ(θ) in Figure 7. Using the parameter values from Table 3, we numerically solve for the minimum
wave speed as

c∗
v ≈ 0.9297 and λ∗

v ≈ 1.5726. (52)

This speed corresponds to the invasion of virus and infected cancer cell populations into an established
cancer and is illustrated in Figure 8b. There is a third term in equation (48), which we analyse next.
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We use the same approach by defining ϕ(λ, c) as

ϕ(λ; c) = Dyλ2 − cλ + η − ξ.

By setting ϕ(λ; c) = 0, we obtain

λ =
c ±

√
c2 − 4Dy(η − ξ)

2Dy
. (53)

We find the minimum wave speed values c(λ), as the minimum value of c for which λ is real. Thus,
we have

c∗
y = 2

√
Dy(η − ξ).

Using the parameters from Table (3), this value corresponds to:

c∗
y ≈ 2

√
0.025(1.28 − 0.16) ≈ 0.3346, and λ∗

y = 6.692. (54)

This speed describes the invasion of immune cells into an established tumor. A simulation is shown in
Figure 8c.

4.3 Invading the Immune-Free Equilibrium E2

This case corresponds to the speed with which the immune system invades the immune-free equilibrium
state E2. We linearize (17) at E2 = (C2, I2, V2, 0).

Ct = DcCxx − C2C − C2I − C2V − pC2Y

It = DiIxx + V2C − aI + C2V − qI2Y

Vt = Vxx + θI − γV − sV2Y (55)

Yt = DyYxx + (ηC2 + ζI2 − ξ)Y.

Similarly to the previous case, we make an explicit ansatz for an exponentially decaying self-similar
wave solution by setting z = x − ct as

(C(x, t), I(x, t), V (x, t), Y (x, t)) =
(
ϵce−λz, ϵie

−λz, ϵve−λz, ϵye−λz
)

.

Substituting this ansatz into system (55) and writing it as a linear system we obtain
Dcλ2 − cλ − C2 −C2 −C2 −pC2

V2 Diλ
2 − cλ − a C2 −qI2

0 θ λ2 − cλ − γ −sV2

0 0 0 Dyλ2 − cλ + ηC2 + ζI2 − ξ




ϵc

ϵi

ϵv

ϵy

 =


0
0
0
0

 . (56)
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The characteristic equatin is given by

(
Dyλ2 − cλ + ηC2 + ζI2 − ξ

) ∣∣∣∣∣∣∣
Dcλ2 − cλ − C2 −C2 −C2

V2 Diλ
2 − cλ − a C2

0 θ λ2 − cλ − γ

∣∣∣∣∣∣∣ = 0 (57)

Let us define χ(λ, c) as the first factor

χ(λ; c) = Dyλ2 − cλ + ηC2 + ζI2 − ξ. (58)

By setting χ(λ; c) = 0, we obtain

λ =
c ±

√
c2 − 4Dy(ηC2 + ζI2 − ξ)

2Dy
(59)

We find the minimum wave speed values c(λ), as the minimum value χ for which it has a real solution.
Thus, we have

c∗
a = 2

√
Dy(ηC2 + ζI2 − ξ) (60)

Using the parameters from Table 3, we have this value corresponding to:

c∗
a ≈ 0.304 (61)

4.4 Numerical Simulations

To obtain the travelling speeds of the four waves numerically and compare them with the theoretical
values derived above, we set up each wave in a separate simulation. In Figure 8a, the uninfected cancer
population is set at its carrying capacity on the left, while all other populations are set to zero. This
allows us to calculate the invasion speed of the cancer front moving to the right into healthy tissue.
The arrow is used as a marker to track the wave’s position. By measuring the displacement of the
marker from t = 20 to t = 40, we find ∆X = 6.20, corresponding to a wave speed of c∗

1 ≈ 0.31215,
which agrees closely with the theoretical value c∗ ≈ 0.3162 in (45). For the second wave, corresponding
to the virus invasion speed into the uninfected cancer population (Fig. 8b), we set the right boundary
to the steady state E1 = (1, 0, 0, 0), while the left boundary is set to the immune-free equilibrium
E2. The arrows indicate how the virus front advances into the C population, reducing its value and
driving the system toward the steady state E2, where the immune population is absent. From t = 20
to t = 40, the wave advances by ∆X = 18.009, giving c∗

2 ≈ 0.900, which is in good agreement with the
theoretical estimate c∗ ≈ 0.930 (52). For the third wave (Fig. 8c), we simulate the immune system
invading the cancer-only equilibrium E1. Similarly, the arrows show the immune front, which reduces
the C to a nonzero value, consistent with the no-virus steady state E3. Between t = 40 and t = 80,
the marker advances ∆X = 13.415, giving c∗

3 ≈ 0.335, which matches well with the theoretical value
in c∗ ≈ 0.334 (54). In Figure 8d, we simulate the immune system invading the other populations in
immune-free equilibrium E2. Similarly the arrows show the immune front, which eliminates the V and
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I populations and reduces C to a nonzero value, consistent with the steady state E3. Between t = 40
and t = 80, the marker advances by ∆X = 12.206, giving c∗

4 ≈ 0.3051, which matches well with the
theoretical value in c∗ ≈ 0.304 (54).

A simulation of the full stacked wave for this example is shown in the earlier Figure 6. Here the
virus infection is the fastest wave and it catches up with the growing tumor after some time. The
immune response is rather slow, even slower than the cancer invasion front (see Table 4), hence, in this
example, the immune response would have a minimal effect on the virus infection of the cancer. This
case contradicts earlier studies, where it was suggested that the immune response removes the virus
before it infects all cancer cells.

However, changing model parameters, we make the immune response to invade faster. For example,
it would be reasonable to assume that the immune cells move much quicker than the cancer cells. So
far we used the same diffusion coefficients for immune and cancer cells (see Table 3). However, if we
increase the diffusion coefficient of the immune system by 10 times, we achieve the speed for immune
invasion (54) as

c∗ ≈ 2
√

0.025(1.28 − 0.16) ≈ 1.058, (62)

which is faster than the virus invasion speed.
We show simulations of this case in Figure 9, we observe that the immune system quickly catches

up with the viral infection, removes the virus and reaches the end of the cancer region. Estimating
the immune invasion speed numerically we observe that the immune system advances ∆X = 20.658
from t = 15 to t = 35 which gives the speed of c∗ ≈ 1.032 which is a great estimate of the theoretical
speed we obtained in (62) c∗ ≈ 1.058. Since we only made the change in the diffusion coefficient of the
immune cells, the speed of invasion for the other populations stay the same.

Case Wave Theoretical Numerical

Slow immune

cancer invasion c∗
c = 0.316 c∗

cn
= 0.312

virus invasion into the cancer c∗
v = 0.930 c∗

vn
= 0.900

immune invasion into cancer c∗
y = 0.335 c∗

yn
= 0.335

immune invasion into virus c∗
a = 0.304 c∗

an
= 0.304

Fast immune
cancer invasion c∗

c = 0.316 c∗
cn

= 0.312
virus invasion into the cancer c∗

v = 0.930 c∗
vn

= 0.900
immune invasion into cancer c∗

y = 0.335 c∗
yn

= 0.335
immune invasion into virus c∗

a = 1.058 c∗
an

= 1.032

Table 4: Comparison of theoretical and numerical wave speeds for slow versus fast immune response.
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(a)

(b)

(c)

(d)

Figure 8: Traveling waves of the different populations at various times: (a) The cancer-only (C-only)
wave invading to the right to the disease-free (DF) equilibria. The wave moved from X1 = 35.298 in
t = 20 to X2 = 41.541 at t = 20. (b) The imune-free (IF) equilibria invading the Cancer only (C-only).
The wave moved from X1 = 18.969 in t = 20 to X2 = 36.978 at t = 20. (c) The immune-cancer
only (IC-only) invading cancer-only(c-only) equilibria. The wave moved from X1 = 16.28 in t = 40 to
X2 = 29.695 at t = 80. (d) The immune-cancer only (IC-only) invading immune-free(IF) equilibria.
The wave moved from X1 = 15.048 in t = 40 to X2 = 27.254 at t = 80.
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Figure 9: The traveling waves of the four populations invading to the right. The waves are captured
at t = 2, 15, 35, and 55.

5 Conclusion

Using a virus as a cancer treatment is a intriguing idea. In fact, some of these viruses have already
passed clinical trials and have obtained FDA approvals for treatment (Greig, 2016). However, oncolytic
virotherpay has not reached its maximum efficacy (Russell and Barber, 2018) due to physical barriers,
tumor heterogeneity, and an immunosuppressive tumour microenvironment. To further investigate the
role of the immune response for OV, we developed a reaction-diffusion model, inspired by the models
by Baabdulla and Hillen (2024) and Al-Tuwairqi et al. (2020). Our model was designed to capture
the complex dynamics between cancer cells, oncolytic viruses, and the immune system. The goal of
this work was to conduct a detailed qualitative and quantitative analysis of the system in order to
address the question: why, despite their promise, do oncolytic viruses as a monotherapy rarely achieve
complete and lasting regression of established tumors? We started our work by performing a stabil-
ity analysis of the space-independent model. This allowed us to identify distinct parameter regimes
defined by θ (the effective viral production rate) and η (the immune stimulation rate by uninfected
cancer cells), thus determining the combinations of parameter values under which virotherapy yields
the best outcome. We also see in Figure 2 that for large values of η the immune system will remove
the virus, and the system becomes a pure cancer-immune interaction. For large values of θ we observe
the opposite, where the immune system is silenced, and we obtain a immune-free dynamics. The
combination of oncolytic virus and immune response is most efficient for intermediate values of η and
θ. We continued our parameter analysis with performing a sensitivity analysis of all the parameters
of the model. This analysis highlighted the strong influence of the immune-related parameters (η
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and ζ) on treatment outcomes. From these findings, we conclude that enhancing the effectiveness of
oncolytic virotherapy requires prioritizing strategies that strengthen its dependence on virus-related
parameters—particularly the virus’s burst rate θ, and the immune stimulation η and exhaustion ξ.

In the second part of our work, we returned to the reaction–diffusion model to study the spatial
dynamics of the system. We identified traveling-wave solutions emerging from the model and, through
leading-edge analysis, we found a series of stacked waves that invade at different speeds. Here we like
to transform the wave speeds back into the original, dimensional variables. For the cancer invasion
front (45), the virus wave (52), and the immune invasion (54), we find

c∗
c = 2

√
Dc

DV
c∗

y = 2

√
DY

DV

(
η1L

r
− ξ1

r

)
c∗

a = 2

√
DY

DV

(
η1L

r
C∗ + ζ1L

r
I∗ − ξ

r

)
(63)

We obtain the speed values in dimensional coordinates in Table 5.

Case Wave Theoretical

Slow immune

cancer invasion cc = 0.027 mm/day
virus invasion into the cancer cv = 0.080 mm/day
immune invasion into cancer cy = 0.028 mm/day
immune invasion into virus ca = 0.026 mm/day

Fast immune
cancer invasion cc = 0.027 mm/day
virus invasion into the cancer cv = 0.080 mm/day
immune invasion into cancer cy = 0.028 mm/day
immune invasion into virus ca = 0.091 mm/day

Table 5: Waves propagation speeds in dimensional coordinates.

There is no doubt that many more combinations of wave speeds are possible. We provide explicit
formulas for some of the wave speeds in (45), (52), and (54), which directly depend on the model
parameters. Once these parameters are known, estimates of these invasion speeds can be made.

Stacked waves suggest that timing matters. If the virus wave outruns the immune wave too much,
immune clearance may come too late, risking viral exhaustion or tumor regrowth. Conversely, if the
immune wave is too fast, it may wipe out the virus prematurely, which is a common problem in clinical
trials of oncolytic virotherapy. Understanding this mathematically helps in treatment scheduling: e.g.,
spacing doses so that we have the waves overlap more optimally. This is achieved by a more optimized
schedule of the virotherapy. While no clinical paper explicitly says "stacked waves," the phenomenon
of multi-phase tumor response (rapid shrinkage followed by slower stabilization or regrowth) matches
this idea. In the future, stacked-wave analysis might guide design of combination therapies, optimizing
virus dosing schedules that balance the speeds of viral spread and manipulating immune response for
maximum tumor eradication.

The stacked waves found here are also mathematically interesting. Similar to the Fisher-KPP
equation, travelling waves can be related to heteroclinic orbits in phase space (Vries et al., 2006). A
travelling wave analysis of our model (43) would lead to an 8 dimensional phase space. Numerically,
we find heteroclinic connections from E1 to E0, from E2 to E1, from E3 to E1, and from E3 to E2.
Essentially a homoclinic tree as sketched in Figure 10. To prove the existence of such a connected tree
of heteroclinic orbits is a formidable challenge, which we cannot solve here.
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Figure 10: Schematic of the heteroclinic connections between equilibria that comprise the stacked
wave. Each of these connections represents an invasion front that might travel at different speeds.
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