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1. Introduction

Numerous studies have been done on the existence of positive singular solutions for various partial
differential equations. One such example is the Lane-Emden equation.

—Au=uP in

’ 2

u=20 on 0f2. 2)

For p > 1, let  be a bounded domain in RY (N > 3) with a smooth boundary. The existence and

non-existence of solutions to this problem have been extensively studied on various bounded domains and
for different ranges of p; see [14,8-10,7]. A closely related example to equation (1) is equation

—Aw = |Vw|? in B;\{0},

w=20 on 0B;j. (3)
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The case 0 < p < 1 was analyzed in [2], while boundary blow-up versions of (3), where the negative sign in
front of the Laplacian is removed, were studied in [12,15]. Additionally, various studies on equations similar
to (3) can be found in [4,3,5,6,11].

In this work, we aim to establish the existence of positive singular solutions to equation (1) in the unit
ball B;, where % < p < 2 and By is centered at the origin in RY (N > 3). Unlike previous studies, we
impose no smallness conditions on k1 and k5 beyond the assumption that they vanish at the origin.

Our main result is as follows.

Theorem 1.1. Suppose N > 3, % < p < 2 and K1, Ky are non-negative, continuous functions with k1(0) =
ko = 0. There exists an infinite number of positive singular solutions ug, vy of

—Au = (1+ r1(2))|Vo|P in B1\{0},
—Av = (14 k2(x))|VulP  in B;1\{0}, 4)
u=v=0 on 0Bj.

which blow up at the origin. Moreover, us and vy converge uniformly to zero away from the origin as t
approaches infinity.

Equation (4) is an extension of the equation studied by Aghajani et al. [1] where they analyzed the
existence of positive singular solutions on bounded domains and also classical solutions on exterior domains.
The parameters. The parameters p, &, 8, and o for the remainder of this work will be as follows unless
otherwise stated.

First we consider the following singular solution of a scalar problem.

Example 1.2. Let N > 3, % <p<2 &:=(p—1)(N —1) (note this implies £ > 1), 5 := % > 0. Then
for all ¢ > 0 the radial function

1 a
wy(r) = | ———————— 5
" /(tyf+ﬁy)“ “

T
is the singular solution of

(6)

—Aw = |Vw|P in B;\{0},
w=0 on 0Bj.

Remark 1.3. For the remaining sections of this work that focus on results in bounded domains, we adopt
the parameter values from Example 1.2. This also applies to all the material presented in the Introduction.

Our approach for finding a solution (u,v) of (4) will be to look for solutions of the form u = w; + ¢ and
v = w; + . Note that ¢, and ¢ are unknown functions, but they are equal to zero on the boundary of By,
and wy is the solution of (6). By considering our solutions u and v in this new form, ¢ and v need to satisfy

—Ap = p|Vur[P2Vwy - Vi = i1 (2)[Vwy + VY P + 1(1) - in Bi\{0},
—AY = p| VP72V wy - Voo = ko (2)[Vwr + VelP + I(p) - in Bi\{0}, (7)
Y= w =0 on 831,

where

I(¢) = |Vwy + V(P — |Vwy|P — p|Vw[P~2Vw, - VC.



N. Mohammadnejad / J. Math. Anal. Appl. 555 (2026) 130033 3

To find a solution of (7), we will apply a fixed point argument. A key step will be to understand the linear
operator on the left hand side of (7), namely the solvability of

—Ap — p|Vu[P72Vuw, - Vip = f in Bi\{0},
—AY) — p|Vw|P~2Vw, - Vo =g in Bp\{0}, (8)
p=9v=0 on 0Bj,

for (p, ), given f and g.
We define the nonlinear mapping T3 (p, ) = (&, 1[)) via

—Ap — p|Vw P72V, - Vi) = k1(2)|Vwe + V[P + 1(3p) in By\{0},
— A — p|Vw|P72Vwy - Vp = ko(2)|[Vws + VlP + I(¢) in Bi\{0}, (9)
p=1=0 on 0Bj.

In section 3, will show that T; is a contraction on a suitable complete metric space. Subsequently, we will
use this result to prove the existence of the positive singular solutions of (4). We fix (f, g), and set F' := f+g
and G = f — g. Suppose that (; is a solution of the scalar problems

—AG = p|VwP?Vuw, - VG = F in Bi\{0},
(1=0 on 0B,
—AG +p|Vuy [PV, - VG =G in Bi\{0},
(2=0 on 0B;.

The problem in (10) has been studied in the previous work [1]. In section 2, we will prove the results for

(11). A linear algebra argument shows that if (; satisfies the above, then for (¢,) to be a solution of (8),
we need ¢, ¥ to satisfy ¢ + ¢ = (3, and ¢ — 1) = (5. From this, we see that

S0:C1+C2 and w:Cl—Cz' (12)

2 2

So to understand the solvability of (8), it is enough to understand the solvability of the two scalar problems

given by (10) and (11). One can write out the left hand sides of (10) and (11) explicitly respectively as

P z-VG p z - Vi
—A + , —A _
SN O TR T ) P
This motivates the definition of the linear operators
P z- V¢

LE(Q) =-AC+ (13)

(tls=t+8) |af

So L; is the linear operator associated with the left hand side of (10) and L; is the linear operator associated
with the left-hand side of (11). Later we will need the following asymptotic result:

1
o lim 77 twi(r) = ~Cs  where Cp = — (14)

r—0 ﬁpfl

e for all t > 0, there exists a constant C' such that li\r% 7w (r) = C.
T
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2. The linear theory
2.1. Analysis of the linear operators Lti

Define the following norms

lellx = sup {lz[7l¢l + [ Vel}, Iflly = sup {|z|7"*|f(2)]}
0<|z|<1 0<|z|<1

where o = 127%}1’. Let X denote the set of functions ¢ such that ||| x < oo and vanish on the boundary of
B and let Y denote the set of functions f such that || f|ly < co. The goal is to show that our nonlinear
mapping T;(p,v) is a contraction by applying Banach’s Fixed Point Theorem on the complete metric space

Fri={(p,¥) € X x X : [lplx, [¢]lx < R}.

On this space, we have

(e, V) lxxx = llellx + [P x-

We can now state our main proposition in this chapter.

Proposition 2.1. Let N > 3, such that % <p<2,¢=(p-1H(N-1)>1,p8= 2% >0 and o = 12)%?.
There is a positive constant C' such that for all f,g € Y, there are functions ¢ and ¢ in X which satisfy

the equation

—Ap — p|Vw[P72Vw, - Vb = f in B1\{0},
— A — p|Vw|P~2Vw, - Vo =g in B;\{0}, (15)
p=1v=0 on 0B,

and the estimate

lellx + [¢llx < Cllflly + Cllglly-

With the approach we have taken in this section, we use the change of notation from (12) and restate
our proposition as follows.

Proposition 2.2. Let N > 3, such that % <p<2,E=p-1HIN-1)>1,p= 2% >0 and o = 127:—117,

There is some positive constant C' such that for all f € Y and non-negative t, there is some p € X which
satisfies

Lf(p)=f in Bi\{0},
{ p=20 on 0Bj. (16)

Moreover, one has the estimate ||¢||x < C||flly-

Spherical harmonics. Note Ay = Agnv-1 is the Laplace-Beltrami operator on SN =1 with eigenpairs (¢, A\x)
satisfying

—Agpi(0) = \ppp(8)  for 6 e SVNE
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and 1o =1, \g = 0,\; = N — 1, Ay = 2N. We normalize v, in L?(S™ 1) such that ¥kl L2 (sv-1y = 1.
Using this, given f € Y, and ¢ € X, we can decompose ¢ and f into various modes by writing

Fa) =Y ba(r)yyu(0)  and  p(x) =Y an(r)yu(0).
k=0 k=0

Note that ax(1) = 0 after considering the boundary condition of ¢. A computation shows that ¢ satisfies
(16) provided ay, satisfies

(N = Dai(r) | Asar(r) | pay(r)

1
Clk (T) r 7"2 ﬁ'f’ 4 t’l"§

=bg(r) for 0<r<1 (17)

with ag(1) = 0.
Let X7 and Y7 be the closed subspaces of X and Y defined by

X, = {go €EX:p= Zak(TWk(e)} , Y1 = {f eY:  f= Zbk(r)¢k(9)} .
k=1 k=1

Note that X; and Y7 are just the same representations as X and Y except that the summations start at
k=1 and not k = 0.

To show that they are closed subspaces of X and Y, we need to show that if any sequence ¢, € X; is
such that ¢,, converges to some ¢ in X, then ¢ is in X;. We need a similar result for Y and Y;. We first
note that if we have ¢(z) € X; then we can write ¢(r,0) = > 7 | a(r)1,(f) and by integrating both sides
with respect to 6, we get

/ (r,0)d0 = " ay(r) / Yi(0)d = 0.
k=1

SN-—1 SN-—1

This is due to the orthonormality of 1;'s and 1)y = 1. Thus, we can conclude that for all ¢ in X we have

peE X = / p(r,d) =0 forall 0<r<1. (18)

SN-—1

Since by the assumption we have @,,(r,6) € X7, it follows that fstl @m(r,0) =0 for all 0 < r < 1. Fix
0 <7 <1 and set (n(0) = @n(r,0) and ((0) = ¢(r,0). We claim that (,, converges uniformly to ¢ in X
on S¥~!. Assuming the claim is true, we can fix 0 < » < 1 and by the uniform convergence of ¢, to ¢ on
SN=1 we get

0= / o (1, 0) —> / (1, 0).

SN-1 SN-—1

Thus we have [¢y_, ¢(r,0) = 0 and by (18) we can see that ¢ € X;. We now prove the claim. If we fix
€ > 0, we can write

lom —@llx = sup [z]7[om(x,0) — (z,0)] = sup |z|”|om(z,0) — o(z,0)] > € |om(z,0) — ¢(z,0)|.
0<|z|<1 e<|z|<1
Note that » = |z| and € are fixed and we know that since ¢,, converges to ¢ in X we have ¢, —¢||x — 0.
So we get the uniform convergence of ¢,, to ¢ away from the origin. We can use a similar proof for Y.
Thus X7, and Y7 are closed subspaces of X and Y respectively.
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2.2. Kernel of Loi

Using the definition of our linear operator (13) in the case of t = 0, we can write it explicitly as

k- Vo(z)
Li(p) = ~Ap+ 2 VAD)
0 Blz|?

where & could be either equal to +p or —p. For simplicity, we set L¢? := L§ and Ly? == L.

Lemma 2.3. Let % < p < 2, and we have the parameters
=p-NYN-1)>1, B=—->0, o0=—".

Suppose ¢ € Xy satisfies L§(p) = 0 in Br \ {0}, with ¢ =0 on 0Br when R < co. If Kk =p or k = —p,
then ¢ = 0.

Proof. We saw that we can decompose p(z) into ¢(x) = Y po; arp(r)yx(f), and since L§ = 0 in Bg\{0},
then ay should satisfy

(N —1)a, N Arag(r) N kajy(r)

o o _
w (1) " 2 Br 0 for 0<r<R (19)

where a;(R) = 0 in the case of R < co. Also we have
sup {r7]ax(r)| +r°|ak(r)]} < oc. (20)

0<r<R
Proof of the statement. To show that (20) is true, note that given ¢ € X, we have ¢(z) = >~ ar(r)vr(0)
with ax(R) = 0. By using the property of orthonormality of 14 (6)’s, we get
)= [ elr0pn o).
SN-1
Thus, noting that |¢o(r, 0)|r7 < |||/ x, we obtain
)] < sup @) [ 1ELXap
SN-—1 r
6]=1
Since ¢ is in X, there exists a positive C}, such that ||¢||x < C. Thus we get |ag(r)| < % and we deduce

r7ak(r)] < Cg. (21)

Using the definition of the gradient in n-dimensional spherical coordinates and the orthogonal properties, we
obtain ¢, = Vi(z)-# which gives us |¢,| < |[Vi|. Again for ¢ € X we can write ¢, (r,0) = >~ a},(r)¥r(0)
where ag(1) = 0. We use the orthonormality of vy (#)’s, and we obtain

ay(r) = / ©r(r, 0)11(0)d0.

SN-—1

Thus, noting that we have |Vi(r, 0)|rot1 < |¢||x, we can write



N. Mohammadnejad / J. Math. Anal. Appl. 555 (2026) 130033 7

il <swlin@] [ oo <6 [ weroja s, [ LA G
j01=1 e e
SN-1 16]=1 16]=1
From this, we deduce
rtal (r)] < C. (22)

The results from (21) and (22) give us sup {r%|ax(r)| + r°"t|a}(r)} < cc. O
0<r<R

Note that the equation (19) is an Euler ODE. We rewrite it as

r2al (r) + raj(r) ((N —-1) - %) — Mgag(r) =0

and its solution can be written as ay(r) = C'k?“’“:r + D" where 4+ are given by

—(N-2-5%) \/(N—Z—g)2+4)\k

+
Vi () = 5 + 5 (23)
First, we let Kk = —p.
We will be looking at the kernel of Ly = L,”. Thus our ODE becomes
N —1a, A !
—aj(r) — ( ) + kar(r) _ pai(r) =0 for 0<r<R (24)

T r2 Br

and the solution can be written as ag(r) = Ckr’yl:r + Dyrx for some Cj, D € R where v* are given

by (23) where k = —p. We claim that 7, + ¢ < —1 for k > 1. To show this, consider the function
(V) =7+ (N-2+ £)7 — A1. Note that —o —1 = p%ll, and using the definitions of 3 and &, we compute

f(=o—-1)= Q(Z(EI)E . Since £ > 1, it follows that f(—o —1) < 0. The function f(v) is a quadratic with roots
~i%, so the inequality f(—o — 1) < 0 implies that v; < —o — 1 < 7;". By monotonicity of v, with respect
to k, it follows that v, < —o — 1 for all £ > 1. We now show that 'ylj + o is nonzero and positive. Note
that we have

Thus by the monotonicity in k, we see that fy,j + o is positive for all k£ > 1.

We first consider the case where 0 < R < oco. By considering the boundary condition, to have a(r)
satisfy (20), we must have ax(r) = 0. For the case R = oo, we note that v, + o is negative, and v;7 + o is
positive and they are distinct. By sending r to zero and infinity, we deduce that in order to have aj satisfy
(20), we must have ar = 0. This shows that for all k > 1

¢ =0. (25)
The proof will be very similar for the case k = p and a simplified proof of this case can also be found in [1]

and we skip the proof here. Thus we proved the lemma, and so we showed that for ¢ € X; if L{(p) = 0 in
Bgr\{0} with ¢ =0 on 9Bpg in the case of R finite where k = p or Kk = —p, then ¢ =0. O
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2.3. Kernel of Lf

Recall that we have our linear operator L¥ defined as:

D z- Vo

B =80 et 8) P (20)
where k is either equal to p or —p.
Lemma 2.4. Let 0 < R < o0 and 0 <t < 0.
o If Kk =p, suppose p € X7 satisfies
LY () =0 in Br\ {0}, withp =20 on OBg (if R is finite),
then ¢ = 0.
o If k= —p, suppose p € X satisfies
L;P(p) =0 in Br\ {0}, withp =0 on OBg (if R is finite),
then in the case where R is finite, we have ¢ =0, and if R = 0o, then ¢ must be constant.
Proof. For the proof we will switch notations, and hence by (26) we can write L = L} and L; = L;*.

Suppose R, t, @ are as in the hypothesis.
e We set k = +p. So we are considering the kernel of L;". A very similar proof was given in [1] so we will
skip it here and we will do the case kK = —p which is more technical. O

e We now set x = —p. In this part, we focus on kernel of L; . First we set kK > 1. Thus ¢ is in X;. Suppose
0 <t < oo. We write p as ¢(x) = > po; ar(r)yr(6), and then ay should satisfy

(N = 1)ay, N Aag(r)  pag(r)

- =0 f 0 R
, 2 ﬁr—i—trf or <r<

—ag(r) —
where ai(R) = 0 when R < co. We should have

sup {r7|ag(r)| + r7Tal(r)|} < oo. (27)
0<r<R

We fix £ > 1 and we set w(7) = r%ax(r) where 7 = In(r). By a computation, we find that w = w(7)
satisfies wrr + g(T)wr + Crw = 0 for 7 € (—o0,1In (R)) where g(7) = N —2 — 20 + W%”T and Cy(7) =
Ak — ﬁ+t§+1>, —o(N — 2 — o). We claim the improved decay estimate: r%|ag(r)] — 0 as r — 0,
and in the case R = oo, r7)ar(r)] - 0 as r — oo. Assuming this holds, it follows that w — 0 as
T — —o0, and for R = oo, also as 7 — oo. By multiplying by —1 if necessary, we assume w # 0. Since
w(—o0) = w(lnR) = 0, there exists some 79 € (—o0,Iln R) such that w(7y) = maxw > 0. This gives
wrr(19) < 0and w,(79) = 0, leading to g(7o)w-(70) = 0. From the equation, we obtain w,,(79)+Crw(79) = 0
which implies —w,(79) = Cxw(79) > 0. From this, we see that we must have

po

Ck(TO) = _Ak - B+t€(£71)70 -

o(N—-2-0)>0.
We know Ay is positive for all k& > 1 and it is obvious that /3"!'155+1)T > 0 for all 7 € (—o0,In(R)). Also
note that N —2—oc=N—-1— ﬁ. By considering the restrictions on p, we find that N —1 — p%l > 0 for
N > 3. Thus we can deduce that
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po

—)\k < 0, _754-156(571)7

<0, and —o(N—-2-0)<0.
So Cy(7) is positive for all 7 € (—oo,1n (R)) which means Cy(79) < 0. Hence, we have a contradiction and
thus w = 0. This gives us ax = 0 for all £ > 1.

We now prove the claimed decay estimate.

Proof of the claimed decay estimate. We fix & > 1 and set a(r) = ax(r), so we have

Aga(r) — pa(r)

—Aa(r) + r2 Br + tré

=0 in 0<r<R,

with a(R) = 0. Suppose the claim is false. Then there is some r,, that goes to zero such that rZ, |a(r,,)| >
€p > 0. Define the rescaled function a™(r) = rZ,a(r,r) and note that |am(1)] > ¢ and r7]a™(r)] < C. A
computation shows that

Aga(rmr) B pa (rpr)
(rmr)2 Brmr + t(rmr)E

T T2 | Aa(ry,r) + =0 in 0<r,r<R,

so we get

R .

—Aad™(r) + -
(r) Br + trérs L Tm

By passing to the limit, we find a® such that it is bounded away from zero with 77 |a (r)|+7° 1| (a>)' (r)| <
C. Thus, we have

Awa(r) | p(a®)'(r)

—Aa™(r) + 2 Br

=0 in 0<r<oo.

Let ¢(z) = a®™(r)yx(6). So ¢ is nonzero too and it is in the kernel of L;. This is a contradiction with
Lemma 2.3 which stated the kernel of L is trivial.

In the case of R = 0o, we assume there exists some 7, approaching infinity as m goes to infinity. Again
we pass to the limit in (28) and we get

(N = 1)(@®)" | Ara®(r)

5 =0 in 0<r<oc.

—(@>)"(r) -

T r
This is again an Euler ODE and the characteristic equation would be 72 + (N — 2)y — Ax = 0 such that

(N —2) + /(N =22+ 4x,

2

VE =

Thus, the solution is ax(r) = C’kr’“:r + Dyr . We have that v, +0 <0 < 7,;" 4 0. So we can deduce that
when we send 7 to zero and infinity, we must have Cy = Dy = 0 in order to have aj in the required space.
This result gives us that ay = 0 for all £ > 1.

o We now set k = 0. We have L; = 0 thus we can write

~ (N—=1aj,  pay(r)
r Br + tré

=0 for 0<r<R (29)

such that sup {r7|a;(r)| +r°"t|a}(r)|} < C. From (29), using the integrating factor u;(r), we get:
0<r<1
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d
2 (pe(r)ay(r) = 0= pa'(r) = C
where C' is a constant. Thus we have

D

o+1 e—1 T
() = S gperimviog (BT
/Jt(T) t+ 3

Note that 0 +2 — N — % = w < 0. Since ¢ is in X, we require a; to satisfy the required bounds
meaning 7°1|a}(r)| should be bounded. So we can deduce that C' should be zero. So we have

peay(r) = 0.

By considering the boundary condition a;(R) = 0, we obtain a:(r) = 0 for r € (0, R) and a4(r) is constant
on the whole space RY. We now consider the case where ¢ approaches infinity. Thus we have the ODE

(N ~ 1)aj
T

~af(r) - =0 (30)

where a(1) = 0. We have the integrating factor as p(r) = #(N =1 thus, we have % (ne(1)ay (1)) = 0. Now
by solving this equation, we obtain

1
a(r) = 0/71 ds = ¢ 2N

RO S il
sN-1 2—-N .,  \2-N 2-N)°

We know a(r) needs to satisfy r7|as(r)| < Cy for some positive constant C. So we should have

1 T2_N ro T.O'+2—N
_ - - < (.
C<2—N 2—N>’ ‘C(Q—N 2—N>’Cl

Noting that o = 127%’1’ > 0 and % < p < 2, by a computation we can see that o + 2 — N is negative. So

r

o

for as(r) to satisfy the required bound when r approaches zero, we should have C' = 0. This shows that
at(r) = 0 when ¢ goes to infinity and so we should have ¢ = 0.

Thus the lemma is complete and we proved if k = p and ¢ € X7 is such that LY () = 0 in Bg\{0} with
¢ =0 on dBpg in the case of R finite then ¢ = 0 and when kK = —p and ¢ € X is such that L; (¢) = 0 in
Bpr\{0} with ¢ = 0 on JBp in the case of R finite then ¢ = 0 and in case of k = 0 and R infinite ¢ is a
constant. O

2.4. Linear theory of Lti on X1; a priori estimate

Theorem 2.5. There is some positive constant C such that for all positive t,,, and functions p,, € X1 and
f™ e Yr we have

31
Ym =0 on 0DB;. (31)

VM%bﬂlm&Wh

One has the estimate ||om|x < C|f™y-

Proof. If we assume the result is false, then by passing to a subsequence (without renaming) there is some
Cmn>0t,>0,f"eYY; and ¢, € X; with



N. Mohammadnejad / J. Math. Anal. Appl. 555 (2026) 130033

K z-Von .
= fm B

om =0, on 0B,

and

lomllx > Conllf™ vy

By normalizing, we get ||¢m|x = 1 and ||f™|y — 0.
We claim

sup {|z7HVom |} — 0.
0<|z|<1

We will show that proving this claim results in: sup {|z|7|¢m|} — 0.
0<]z|<1

Proof of the claim. Suppose there is some 0 < |z,,| < 1 and €y > 0 such that

€ < |xm|a+1‘v@m(xm)| <1

11

(32)

(33)

(34)

There are two cases that should be considered. Either |z,,| could be bounded away from zero or it could be

approaching zero.
e Set k= p. Now we prove the first case for L; .
Case 1: Assume |z,,| is bounded away from zero. Define Ay, and Ay, for k > 2 as

1 - 1
Ak:{xeBlz—<|x\<1} and Ak:{xeBlz—<|x|<1}.

k 2k

Note that A, C Aj. We have

P z-Vom . ~
—Ag,, = 7 — A,
om =S G R)

Set g = f 1+ 8 2P We can see that
p -V < D l"V(,Om’

m|z|*~ + B) | |z[?

(t
pllemllx  p 1 Do \2to
Blal? ~ glaprE = gk)

(tml|z[s=t+B)  [=f?

IN

Also we find that,

z|72 ™ Sy
sup | f™] = SUP‘ |z[o+2 < (su ”

cEA cEAL z€A

= Yk-

sup e rez) < @Ry =l

(36)

which by (35) and (36) we can see that g,, is bounded in A. So there exists a positive constant C' such

that

9™ (@)l e () < C

meaning
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[Aemllpeo 4,y < C-

By elliptic regularity, we can say that for some 0 < A < 1, there exists C; > 0 such that

lemlleraca,) < Ch

Thus {@.m }m is a bounded sequence in C1*(Ay) for all k > 2. By the standard compactness argument and
a diagonal argument there exists some subsequence {@m, }i C {@m}m and ¢ € C12 (4}) such that

m, o CVE(Ay).
So we can write
L35
gpmi — SO Cl002 (Bl\{o})

Suppose t,, converges to some t € [0, 00] and by passing the limit we see that when ¢ € [0, 00), ¢ solves

P T Vo

_Aw+(t\x|f—1+ﬁ) FE =0 in B;\{0}

with ¢ =0 on 0B;. When t — oo, we get
—Ap =0 in B;\{0}

with ¢ = 0 on 9B,;. Using the completeness of R, we can pass to a subsequence and so x,, converges
to some 1z such that |zg| is bounded away from zero. We can now pass the limit in (34) to see that
|0]7 L[ Vip(x0)| > €0 and this means ¢ # 0.

We need to show that ¢ is in X;. So we need to show that ¢ belongs to X and it has no £ = 0 mode.
We showed that for every fixed 0 < |z| < 1, we have |2|7 TV, (z)] < 1. So by passing to the limit, we
get |z|7T1|Vip| < 1. Thus by integration, we can show that we have |z|7|p(z)| < 1, so we get

sup {[z]7|oo(@)] + [ 7 [Vip(x)[} < oo,
0<|z|<1

This means that ¢ is in X. First note that since ¢,, belong to X; for all 0 < r < 1, we can write

oo

om(r0)d0 = " ay(r) / Vr.m().1d0 = 0. (37)

k=1

|0]=1 |6]=1

This shows that ¢,, has zero average over all the sphere for radius 0 < r < 1. Now we use the convergence
we obtained above, and we can write for all 0 < r < 1 we have that 6 — ¢,,(rf) converges uniformly on
SN=1 t0 § + ¢(rf). Thus for all 0 < r < 1 we have

0= / Om (rd)dd — / o(rd)do.
10]=1 10]=1
So ¢ also has zero average over all the sphere for radius 0 < » < 1 and hence ¢ is in X;. This means that

¢ € X; is nonzero. Thus for ¢ € [0, 00) we have a contradiction with the results from the previous lemmas.
We now show that in case of t — oo we also get a contradiction. We saw that when ¢t = co, we have
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=0 on 0Bj. (38)

{ Ap=0 in Bi\{0},
Then we write ¢ = > 7=, ax(r)¥(6), and solving the equation gives us

+ —
ap = Cgr’ + Dyr7e

where

+ —(N-2) n V(N —2)2 + 4\

Tk T T 2

In Lemma 2.4, we showed that v, + 0 <0 < 'y;: + o for all £ > 1. Hence, to have ¢ in the required space,
we must have Cy, = Dy = 0 and so ¢ = 0. It is a contradiction with ¢ being nonzero.

Case 2: In this case, we assume there is some {z,,} such that |z,,| — 0 and |2,,|° Vo (zm)| > € > 0.
Set S, = |7, so we have s, — 0. Define z,, = s, !

Thus,

T a sequence and note that by definition |z,| = 1.

\zm|”+18;+1|V¢m(smzm)| = san\Vgom(smzmﬂ > €9 > 0. (39)

Define (,(2) == 89,0m(smz) for 0 < |s;,z| < 1. By (39)

|VCn(2m)| = Sgn+1|v§0m(3mzm)| > € (40)
and also we have the bounds
1271¢m(2)| <1, and  [2]7T [V (2)] < 1. (41)
We can write
D S$m 2.V om(Smz)
—Aom(8mz) + = fM(s,2).
v ( ) B8+ tm|3mz‘£_1 |5mz|2 f ( )

Using our definition, we can obtain A, (2) = s 2An (sm2), and V(n(2) = 771 (8m2). Thus a com-
putation shows that

P 2.V(n(2)
— Al (2) +
m(2) B+ tmss HzE-t 12)?

= sy 2 f ™ (sm2). (42)

Note that by setting ¢ (2) = 5772 f™(s,,2), we showed that

m

m - 1
ijsi?l(cm(z)) =¢™(z) in B, =E,={2:0<|7]< s_}

Sm

with (,, =0 on OF,,. Thus

CAC(2) = g™(2) — D 2.V (2)
iml2) =97(2) Bt tmst Hze1 |2

in E,,.

We define Ay, and Ay, for k> 2 as

Ak:{2631:%<|2|<k} and Ak:{z€B1:%<|z|<2k}.
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We have that Ay C Ay, and also A, C E,, for m big enough. Thus we obtained

p Zva(Z) : A
—AGn(z) = g™ (2) — in Ag.
< ( ) g ( ) ﬁ+tm3§,@_1|z|5—1 |Z‘2 k

First note that

myo_ o421 pm _ ‘Sm|a+2|z|a+2|gm| HmeY 240 gm
sup lg™| = sup sy, lf™ (smz)| = sup = < (sup = ) < RNy (43)
zEAL zEAy zEAy |Z| z€AL |Z|
Also we have
p 2 VCm p ‘Z|U+1‘V<m‘
(tmsen 26714+ 8) 12 |7 (tmsS tzE-1 +8) [zl
< P 27 oml " Vepm(sma) 2 llemlx 21 P gpiaie
T (b5 H2IET + B) |2]7+2 T Bzt Blelot? T B
Set G = g™ (z) — T 55€1|z|€—1 Z'Vlgré(z). By (43), we can show that G is bounded in Aj. Thus, there exists

a C' > 0 such that |G| ~(4,) < C and since —A(y, = G, we have [|An| 14,y < C. By the elliptic
regularity, we can say that for 0 < A < 1 there exists a positive constant C; such that

[Cmllcraca,) < Cr

Thus {¢n}m is a bounded sequence in C**(Ay) for all k > 2. By standard compactness argument and a
diagonal argument there exist some subsequence {(m,; }+ C {(m}m and ¢ € Clv%(/[k) such that ¢, — ¢ in
CL2 (Ag) so we get

A
1,5

Cme = ¢ Ciod RY\{0}).

Suppose that ¢,,s57 1 converges to some t € [0, oc]. By passing the limit in (42) we see that when ¢ < oo, ¢

solves
p z- V¢ : N
—A = R
CEEEY) NFEE A
and in the case of t = oo, we get
A¢ =0 in RM\{0}. (44)

Using the completeness of RY, we can pass to a subsequence such that z,, — zy with 2y bounded away
from zero and |zg| = 1. We can now pass the limit in (40) to see that |V({(29)| > €o and this means that ¢ is
nonzero. We now need to show that ¢ is in X;. So we need to show that ¢ belongs to X and it has no k =0
mode. We showed that for every fixed 0 < |z| < 1, we have |2|7|(n(2)] < 1, and |2|7 T V(n(2)] < 1, so by
passing the limit in these two expressions, we get |2|°T1|V{(z)| < 1 and |2[7[¢] < 1 in RN¥\{0}. Thus, ¢ is
in X. We know that (,, has no k¥ = 0 mode so (,, € X;. With a similar approach to case 1, we can show
that since (,, is in X7, it has zero average over the sphere with radius 0 < r < 1. With the convergence that
we have obtained, we find that ¢ has also zero average over the sphere and so ( is also in X;. This shows
that ¢ € X is nonzero and it satisfies L;(¢) = 0 in RV\{0} which is a contradiction with the kernel results
we obtained before.
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When ¢t = oo, we have
A¢ =0 in RM\{0}. (45)

We can write ¢ =Y p-; ax(r)yx(#). Solving the equation gives us
ap = Ci(r") + Dy(r)

_(N— \/7— . s — .
where 'y,:f = (]\g 2 4 v 22)2+4/\k. In Lemma 2.4, we showed that ’y,ir + o is positive and 7, + o is
negative and they are both nonzero and distinct. Hence, to have aj in the required space, we should have

Cr = Dy =0. So ¢ =0 and it is a contradiction with ¢ being nonzero.
The results from case 1 and case 2 complete the proof of the claim we made in (33) which means we have

sup |z|7 o (z)| = 0. O
0<|z|<1
As we mentioned before, this result gives us
(46)

sup {|z|”|pm[} — 0.
0<|z|<1

To show this, fix 0 < |z| < 1 and let & be a point on the boundary of B1\{0}. Also, let t; = ﬁ such that

9(t) = @m(tz). Then, ¢'(t) = Vi, - ¢ and this gives us

ty

lg(t1) — g(1)] < /|g’(t)| n

1

Thus, we can write

t1
[om(®) = om(@)| = lom(@)| < [ [Fm(t2)]la] . (47)
1
We showed that |V, (2)||z|7 T < e for 0 < |2| < 1 and we can write
Vo (tz)[t7 Tzt < e (48)
By (47) and (48), we find that
| el o 1
€lx € € t7%.4 € —
m < | ————dt=— dt = S (2t _° 7=
lom ()] —/t0+1|x|o’+1 |x|o/to+1 |$|a[_0]1 |x|"a[t‘1’ +1]
1 1
so we have
2l lpm(@)] < <1 - o] < < (49)
Pm 0o 9~ o’

When € goes to zero, we get that |p,, (tx)|t?T1|z|7 Tt approaches zero. By (49) we also find that || |¢,, (z)]

goes to zero. Thus we have
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sup {|z[7"H [V om (@)] + |2]7[om (@)} = 0.
0<|z|<1

This is a contradiction with ||¢||x =1. O

e Set K = —p such that {©m}m C X7, f™ € Y1 satisfy

~Aon TR '|Z|f’" = B, (50)
m =0, on 0By,
and we have the estimate
lemllx > ClLf™ly
such that
€0 < [@m| T Veom(zm)| < 1. (51)

We will skip the proof as it would be very similar to the other case. O

For the case k = +p one can use a continuation argument along with Theorem 2.5 and the studies that
has been done on L in [2] and [1] to show the following. At this part, we skip the details on the continuation
argument in the case of Kk = —p and they will be studied later in Lemma 2.8 and Lemma 2.9.

Corollary 2.6. There exists a positive constant C such that for all f € Y1 there is some ¢ € X1 such that
L () = f in B1\{0} with o =0 on 0By and ||¢|lx < C|flv.

To get the desired result on the full space X, we need to recombine it with the result for the £ = 0 mode.

Lemma 2.7. (k = 0 mode for L) We are considering the case where k = 0 in (17) and for all positive t,
a(r) (with dependence on t) solves the equation. We are also assuming

sup r7+2[b(r)| < 1 (52)
0<r<1

thus we have

(N = Day(r) = pai(r)

"
= b(r r<l1
ag () e biry 0<r< (53)
with a;(1) = 0. Note that a(r) also satisfies
sup {7' ‘at@ )| e 1|a2(7)|} <C. (54)

0<|z|<1

Proof. From (53), using the integrating factor ju(r), we get —-(p(7)a, (7)) = p(7)b(7). Noting that
pt(1) = 1, we can integrate both sides and we obtain

- [ e = [ @b = ~an) - ps)as) = [ aedr.
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We can now deduce that

1

al(s) :u%(s)@u) 4 / ut(T)b(T)dT).

S
By integrating again with respect to s from r to 1, and considering a;(1) = 0, we get

1

an(r) = — /1 Ntl(s) (a;(1>+ / ut(T)b(T)dT>ds.

T S

Set ay(1) = — f;t 1t (7)b(7)d7, where RS™'t =1 then we have

1 1 Ry T
() = () - R/ i (r)b(r)dr + / (e = — / (b = —— R/ (r)b(r)dr.

So we can write a; as

ar(r) = /1 (M%(S) /S;Lt(T)b(T)dT>ds, 0<r<1.

T t

We now need to check that a; satisfies the bounds independent of ¢ for large ¢.
We should consider two cases: (3) 0 <1 < Ry, (i) Ry <r < 1.
For r < R, we have

Ry

cro i (16T 48\ T
) <72 () T i) ar

T

P R:
oo » tr§71 +,B *(ﬁ) 7_0+2

T

Note that —o —3+ N — & = —¢, so by (52), we can write

() T €1 (27) o2
B t+ 8 =T e (TS B\ P ()| T
o411 -1 N-1
7 ag(r)] <7 (trfl +5> /T ’ ( t+ > Fo+2 dr

T

SB) oy (Rayie e
<( 148 )“’ (1 (&)t f)< (/3+1> 1
“\tré 4+ -1 - Ié; -1

Thus we proved

F1\7T 1
rotal (r S(ﬂ—) —— for 0<r<R. 55
< (57) 75 (55)
For r > Ry, there exists a constant ¢, > 0 such that we have (a + b)? < ¢,(a? + b?) for ¢ > 1 and by using

this inequality and noting that £ — % < 0, and £ > 1, we can write
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r

£—1 E-1\ 21 T b—1pl—§ E—1\ 27
r /(ﬂthT ) dr < Ci1p87-1r Rf) n Cy(trs—1h) ’
¢ (B+ )75 (B tré )it

rtal(r)] <
0 <

t

where C is a constant independent of ¢. Recall we have tRS ™' = 1, thus

CiB7Ttrs=t  Cy(trh) T _ C1 871

rotal(r)] < - — < — +C4.
R P s T P
Since for 7 > R; we have tr°~' > tR7~! = 1, we can deduce that
ot al(r)] < CLB7T + Cy = C1(1 + B7°1) for 7> Ry. (56)

Combining (55) and (56) gives us

: o 1\ 7™ 1
Oigglr"“lat(r)lémax{&(Hﬁp—l), (%) ng}

This shows that a.(r) satisfies the equation and is bounded independent of t. O

We will delay the proof of the mapping properties of L; for now and we complete the proof of the main
linear result assuming we have the L, mapping properties.

Completion of the proof of Proposition 2.1. Here, assuming that we have the result from Lemma 2.9, we
can combine it with Theorem 2.5 and Lemma 2.7 to complete the proof of Proposition 2.1. Let f € Y and
v € X satisfy (16) and we write f(z) = fo(r) + f1(z), and p(x) = wo(r) + ¢1(x), where we have split off
the kK = 0 mode from ¢; € X7, and f; € Y7. Then by Theorem 2.5, we can write

lellx <lleollx + llerllx < Clfolly + Cllfally-
Hence, if we can show there is some constant D > 0 (independent of f) such that || folly + [|filly <

D| fo+ filly then we would be done.
Given f €Y, we have

Fla) =) bi(r)vr(8) =bo(r)o () + Y bi(r)vr(8) = bo(r) + > br(r)vw(6) = fo+ fi
k=0 k=1 k=1

where 1o (0) = 1 and by(r) = \SN—1*1| Jon—1 f(r,0)r(0)d6.
Noting that

1£Ily | on—
£ 0)la0 < T[SV
SNZ1-1
we can obtain
folly = sup e = swp 72 [ peoo < swp 2 g o
0<|z|<1 0<|z|<1 |SN =1 0<|z|<1 rot

SN-—-1

We know f; = f — fp so we can write
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Ifilly = I1f = folly < IFlly + [lfolly < 2[[flly- (58)
By (57) and (58) we have
[folly + lf1lly < DIlflly = Dllfo + filly

thus

lellx < Dlifo+ filly = DI flly (59)

where D is a positive constant independent of f. Now we can go back to our previous notation to show that
the main result we want in Proposition 2.1. We proved that if we fix (f,¢g) and set F = f+gand G = f—g
and consider (; to be a solution of the scalar problems

and

~ACG — p|Vw|P~2Vw, - V¢ = F, in B;\{0}
(1=0 on 0Bi,

—AG + p|Vw|P2Vwy - Vi =G in B;\{0},
(=0 on 0Bi,

we can define the operators

D x-V(
(tz|s=1 +8) [=|>

Ly (¢) = —A¢+

By (59) for some positive constants C; and Cs, we have the estimates
[Gllx < Cil|Flly and  [G2flx < C2||Glly-

We know ¢, and v satisfy ¢ + ¢ = (1 and ¢ — ¢ = (3 From this we saw that

SRS GG
o= Y= B (60)

So we get
lellx = Cillg + Gllx < CulllGll + liczlD < CUFIy + I1G]y),
and
[¥llx = Ca2llGy = Gllx < Ca(liGull + lIG2]l) < CUIF Ny + IGly)-
Since F' = f 4+ g, and G = f — g we have
IFlly < |flly +lglly and |G| <|Iflly + llglly-

So there is some positive constant C' such that for all ¢ > 0 and for all f, and ¢ in Y, there are some ¢ and
1 in X which satisfy

—Ap — p|Vw|P~2Vw; - Vo = f in B\ {0},
A — p|Vuy|P~*Vw, - Vo =g in Bi\{0}, (61)
p=1v=0 on 0Bj,
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and we have the estimate
lellx + I9llx < Cllflly + Cliglly-
This completes the main result of our linear theory, and Proposition 2.1. O

We now turn to the case of Kk = —p. Consider (17) in the case of Kk = —p and ¢ = 0 given by

—ay(r) — W ;1)% + Akig(r) — paéir) =bg(r) for 0<r<1 (62)

with ag(1) = 0.

Lemma 2.8. For all k > 0 there is some Cy, > 0 such that for all functions b(r) with supg., ., r°2|b(r)| < 1
there is some function a(r) which satisfies (62) and supg.,. ., 77a(r)| < Cj.

Proof. Here we assume k£ > 1 and ¢ = 0. In Lemma 2.9 we will prove the result for the case where k is
zero and t is positive. Our result will also hold true for ¢ = 0. By assuming k& > 1, we have an Euler type
equation. We know that the fundamental set of solutions of homogeneous version of (62) play a crucial role.
The solution of the homogeneous equation is given by a(r) = Clr”’;r + Cyr7k where

~(N—2+8) (V2452 44N

+
+
2 2

Ve =

We can now use variation of parameters to write out the particular solution of (62) as
agp(r) = ul(r)r%:r + uz(r)ﬂ’;. (63)
We know that
 (r)r () = 0. (64)

Thus we need to solve for uq and ue. We compute ay, p, aﬁw, and agm and plug in these values in (62) and
we get

Wy Ty e T g {7;2 WA [N o %] - )\k] o)

+ ugr s 72 [7;;2 =Y {N -1- %} - >\k:| = —bi(r).

A computation shows that

[w??—%?w? {N—l—%} _/\k:| = [vf—vk”r%? {N—l—%} —Ak} = 0. (66)

Thus we have
u'fy,i'r”’jfl + ubyy 7% T = —bg(r) and u’lrmir + ubr = 0. (67)

From these two equations, we can solve for u; and uy and we get:
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B [ b (7)dr 0d wslr) — [ —bg(1)dr
uqp (r) _/—Tﬁ = 5 and  usg( )_/—7-%: — (68)

—1 _ —1 _ At
7 ('Yk Tk 7 ('Yk Yk )

where C1, Co and T} and Ty are to be picked later. Thus the solution of the equation (62) can be written
as:

T I

an(r) = Ciri 4 e ot [ 00T ap [ Zhe()dr (69)
W)

Y1y~ Yo —l(ny— _ At
7, RO 7 A ™ e =)

By the boundary condition, we need to have ax(1) = 0. Thus we pick T} =1, Co = 0, To = 0 and C; such
that we have

1 1
—bg( b d
A Ty — 'Vk) 0 Ty =)

We first show that C is well defined. Note that we showed that v, + 0 +1 < 0 and

()l 1

. 1
e —1 T v okl (71)
Thus we have
1 1
cl<|f el e e s (72)
, TV~ —’Yk) _’Yk|0 7o+ + Ve — vl lo+ 7 |

where this is bounded by some positive constant C'. This shows that C is bounded. So we found the equation
of ak(r) as follows

1 r r
_T"/k/ z +7A'Ylj/ blk( )d +Tvk_/ ___bk(’]_—)d’r —. (73)
S T oy =) / ™ = %) 2 T e =)

With this choice of parameters, ay(r) satisfies the equation (62) and the boundary condition. We now need
to show that it satisfies the estimate as well. We have

1 + 1 _ r
W b L b(7)d TP by, (7)d
r%ag(r)| < o /W L +/ k(:)TJr - +/ lr)dr
Y — e J T 1 ’yk W ) ™ - ) T -1

Noting that we have the estimate (71) and o + ’y,j > 0, we see that there exists a positive constant C' such
that

+ 1 1 +
s d d vl +o 1
4¥¥:/mm il Sf*”/mvn < ( +>5@ﬁ”éc- (74)
Ve — Vi T 1 0= |U+’Y | ro 7k

We now need to examine the other two terms. Similarly, we should note that we have sup r7*2|by(r)| < 1,
0<r<1

and o + ’y,j > (0. Thus we get
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+ 1 _ T + -

rete b ( rore dr 1 re o re T

= +/ —+ = +/bk(7') — | < — —+ — (75)
K Tk T F ) T~ e =l \lo+7 | Jo+ g [ te

0

<ptop <
The bounds we get from (74) and (75) give us the desired estimate on ag(r). O

Proof of Proposition 2.2. Recall we are trying to show there is some C > 0 such that for all f € Y and
t > 0 there is some ¢ € X which satisfies
p=0 on 0B;.
Moreover one has ||¢]lx < C| flly-
For the case K = +p, the result has been proved in [1]. We are going to show the result is also true for
the case k = —p. First we prove the result on space X; and to get the desired result on the full space X,
we will recombine it with the result for the £ = 0 mode in Lemma 2.9. We fix some 0 < T < oo, and define

the set of A to be all ¢ € [0,7T] such that there exists a C; > 0 that for all f € Y] there exists a ¢ € X;
satisfying (76) and the estimate

lellx < Crllflly- (77)

In Lemma 2.8, we showed that 0 € A, thus the set A is non-empty. We are going to show that A is closed
and open.

First to show that is open, we let tg be in the set A, and we are going to show that for some small € we
have that ¢t = tg + € is also in the set A. This means that we need to show that there exists a C; > 0 such
that if we let f € Y7 then there exists ¢ € X7 such that

Ly (p)=f, in Bi\{0},
{ Y = 0, on 831, (78)

and they satisfy the estimate. Since ¢ is in the set A, thus there exists a C, such that for all f € Y7 there
exists a g such that they satisfy

L_((po) = f? in Bl\{o}a
{ <p; =0, on 0Bi, (79)

and the estimate

leollx < Croll flly- (80)

We look for a solution of the form ¢ = ¢y + ¢ where ¢ is unknown. We let L, (¢) = —Ayp + a; Vi where

_ —px
U = GRE e Thus we want

—A(po + 1) +ay (Voo +Vy) = f
= —Apo + a, Voo — A + [asy e — a1, Voo + g4 VY = f.

By (79), we find that
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[ =AY+ [ag,1e — a)|Vipo + ay 4V = f
s —A?,b + &t0v¢ + [at0+€ — atO]Vgao + [at0+5 — atD]Vw =0
= Ly, (¥) = [at, — ato1e| Vo + [at, — argte] V). (81)

Thus, we need to find 1 such that it satisfies (81). Now let f € Y] be nonzero and set F' := ﬁ so ||F|ly = 1.
By noting that g satisfies (80) and ||| x < 1, we want to show that ¢ is a solution of L; (¢) = f, so we
are going to apply a fixed point argument. Define the mapping T (¢) = 12) such that

~

Ly (¥) = [at, — ato+c| Voo + [at, — ator| VY = f1. (82)

We are going to do a fixed point argument on T, : By — By where By = {¢ € X; ||¢||x < 1}. We need to
show that for some € there exists a small ¢g > 0 such that for all |e| < ¢

. TE(B1) C By (Into),
o there exists some v € (0, 1) such that for all ©1,19 € By we have ||T.(¢2) — Te(v1)|lx < v||vv2 — 1llx
(Contraction).

(I) Into. We have L, (1) = f1. Let f1 == K + I where K = [ay, — ay,1]Vipo and I == [as, — azy1c] V).
Thus we have

2l < KTy + [ ]ly- (83)
We can find
p p
1Ky < sup || ?[ar, — aty+] Voo < sup 2|7 Vi - - - -
0<[e|<1 ot 0<le|<1 ((to+o)zls=t+8)  ((to)lz|*~" + )
(84)
Since g € X, we know that sup |z|7 T} Vo] <1, so we get
0<|z|<1
K|y < sup |z|7T Vol pe |zl ’ <2 (85)
~ o<lzl<1 [((to + )|z~ + B [((o)l=[*~ + B)]| — B2
and thus as € goes to zero, || K|y goes to zero. For ||I||y, similarly we have
Iy < swp 72| Vo< sup 79| Pkt )
y < sup |z Aty — Qtote < sup |z — — .
0<fa|<1 © 0<le|<1 [((to + e)l[s=" + B)] [((Ho) x|~ + B)]
Since ¢ € X, we know that sup |z|7 T Ve| < 1 so we get
0<|z|<1
p
]Iy < 5 (87)

and thus as € goes to zero |||y goes to zero. By (83), we can deduce that for e small we have T,(B;) C By
and so T is into.
(II) Contraction. We need to show that for some v € (0,1), we have

ITe(¥2) = Te(Pr)llx < llvb2 = ullx. (88)
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We set the right hand side of (82) to be f; and we can write it as f; = K(pg) + I(¢p) where K =
[at, — ato+e|Vpo and T == [as, — aty+]Vip. Thus we can write || Te(12) — Te(v1)| x as

K (o) + I(1h2) = K(po) = I(¥1)lly = [1(2) = I(W1)lly < sup |&]7F?|Vipy — Vb [[ag, — age]

0<|z|<1
pelaf!
< swp V(- )l - S—
0<zl<1 [((to + )|~ + B)] [((to) ¢~ + B)]
Similar to (86), we can find that
pelal!

1(62) — TWD)lly < 162 — illx \ ] < lv-vilx (69

[((to + &)lx[*=1 + B)] [((to)[z]¢ + B)]
For € small, we get that there exists some v € (0,1) such that
11(th2) = I(¥1)lly < ll¥2 — ¢nllx (90)

which gives us

I Te(th2) = Te(¥1)llx < ylle2 = ¥ullx- (91)

Thus, T, is a also a contraction. So we can apply Banach’s Fixed point Theorem and thus there exists
1 € X; such that it is the fixed point of T.. So we showed that there exists a constant C; such that for
F €Yy where ||F|| = 1 there exists a ¢ in X7 such that L,(¢) = F. We show that there exists a C, > 0
such that for all f € Y] there exists ¢ € X such that they satisfy L:(¢) = f and the estimate. Thus, using
the linearity of L, we can write

Li@) = F = T = (111 L7 (0) = L (Ufllve) = £
1flly
Now we set ¢ = || ||y, so we have
Li(p)=f and |olx <[lIfllvellx <llelxlflly < Cullfly- (92)

Thus for all f € Y there exists some ¢ € X; such that L; () = f and ||¢||x < Ct || f]]. This means that
t =ty + € is in the set A and thus A is open.

We now show that A is also closed. Let ¢,, be in A such that t,, converges to t € [0,T]. The goal is to
show that ¢ is also in A. So we need to show that if we have f € ¥; we can find ¢ € X; such that L;(¢) = f
and they satisfy the estimate. Since t,,, € A thus for all f € Y] there exists ¢,, € X7 such that Ly (om,) = f
and [pml[x < Gy, [If]ly. From Ly, (om) = f, we get

—Apm +a;Vom = f (93)
where a; = W. Thus we have
—Apm = —atVom + f = gm. (94)

We first assume Cy , is bounded. Similar to before for k > 2 we define the two sets

Ak:{xeBl:%<|m\<1} and Ak:{xeBl:%<|x|<1}.
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such that A, C A,. With a similar approach as case k = —p in Theorem 2.5, we can show that g,, is bounded

in Ay, and we have [[Apn| 1~ 4,) < C. By elliptic regularity we get that [|mllc1a(a,) < Ci. Thus, we

can use the compactness argument and the diagonal argument to deduce that there exists a subsequence
_ A

{@m, Y C {Pm}tm and @ € C12 (A}) such that @, — ¢ in ohs: (B1\{0}) and thus ¢ satisfies

loc

D - Vo .
AT e T B T Bk o

Note that for fixed 0 < |z| < 1 we have

lellx = sup {Ja|7ol + |27Vl } <

lim sup {|el”lgm| + 2" Voml} < T [gmlx. (96)
0<|z|<1 M=o g<|z|<1 m=—00

Thus, since t,, € A, we get
lellx < lim flom|x < Ct, [ f]ly- (97)
m— o0

This gives us that ¢ satisfies L; (¢) = f and the estimate thus ¢ is in A.

We now assume (Y, is unbounded. Since by the assumption Cy, is the smallest possible constant that we
have the estimate for, we can say that we can find some ¢, € X; and f € Y such that L; (¢,,) = f and
lemllx < Cy, |l flly- But for (Ct,, —1), we do not have the estimate and thus we get ||@m||x > (Cy,, =D flv-
We first normalize and we get ||om|x =1 and || f|ly — 0. We also have

_A(pm = —atVSOm + f = 0gm (98)

and with the same approach as above there exists a subsequence {@m, }i C {@m}m and @ € C12 (4) such
that

T e o0 i B0} (99)

—Ap —

With a similar argument as in Theorem 2.5, we find that ¢ € X; is nonzero and it in the kernel of L,
which a contradiction with our kernel results. Thus we can deduce that C  should be bounded. We have
shown that A is non-empty, open and closed meaning that for all ¢ € (0, 00) there exists C; such that for
all f € Y7 there exists ¢ € X such that

L (p)=f, in Bi\{0},
{ =0, on 0Bj, (100)

and

lellx < Cellflly- (101)

So for all 0 < T < oo there exists a CT < oo such that |Cy| < CT for all 0 < t < T. We should note that C,
can not approach infinity since if we assume that C; — 0o as t — 0o, we can use the same contradiction
argument as in case kK = —p in Theorem 2.5 (see [13] for the full details). This shows that C; should be
bounded and thus the proof is complete. O

Now to get the desired result on the full space X, we need to recombine it with the result for the £k =0
mode.
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Lemma 2.9. (k = 0 mode for Ly ) There is some positive constant C' such that for all positive t and all b(r)
defined on 1 € (0,1) with infinite supy.,. .1 77 2|b(r)|, there exists some a; which solves

(N = Day(r) __pai(r)

" —
at (r) r Br+tré

b(r) 0<r<1 (102)

with ay(1) = 0. Also, there exists C > 0 (independent of t) such that a,(r) satisfies

sup r7Hal(r)| < C sup r72|b(r)). (103)
0<r<1 0<r<1
We are also assuming
sup 77 2[b(r)| < 1. (104)
0<r<1

Proof. The same as before, we know the integrating factor associated with our ODE (102) is given by
pi(r) = ) where

= (45t (o (5,

By noting that (1 — &) = 1 — p, the integrating factor is

pe(r) =

() .
PE—1 1= B(1-¢) _ T
(N-1)Inr+5rg (1’“(6 t+6+t>> _ -1 In (BTEH>  Neigz (148 (=)
e =e e =7 il —=r .
t+p

Thus from (102), using the integrating factor, we get

L ()ai(7)) = ().

By considering u:(1) = 1, we can integrate both sides and obtain
1 p 1 1
- [ twnaieir = [ b = ~ud) - ps)a) = [ mmpdr

S

Thus, we have

d(s) = M%(S) <a;(1) + /1 m(f)b(T)dT) (105)

S

To obtain a:(r), we integrate (105) with respect to s from r to 1 and we consider a;(1) = 0, so we deduce

an(r) = jﬂ%@(ag(l)+/1ut(7)b(7)d7>ds.

T S

We set a}(1) = — féf 11t (7)b(7)d7 where RS™'t = 1 then we have
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T

/,ut (T)b(T)dr.

Ry

1

ay(r) = —m

So we can write a; as

1 s

a(r) /(Mtl(s)/,ut(T)b(T)dT>ds for 0<r<1L

r R
Thus by considering (104), we can find that

S

alr) < /1 ( o/ %7—0+2|b(7)|d7>d3 (106)

e (s)
T Ry
1 -1 ﬁ —(+&) S -1 ﬁ (+2-)
_n_p [tssT 4+ 1-r treT " + -/ . iop
< 1-N Bl ———— / = §+23 b
< o3 (t 20 e I I O]
T Rt
<Ci|[b(r)lly-

So we have shown that a; satisfies the equation with an estimate, but C' can possibly depend on ¢t. Now
assume the result is false and we suppose that there exists some positive ¢, such that C;, > M. Also, a,,,,
and by, satisfy (102) and

las,, [[x > Ml[bm]ly.
By normalizing, we can assume that
[bmlly = sup {r7"2[by(r)[} =0 and |lar,|x = sup {r7lac,, (r)] + 7" ey ()]} =1. (107)
0<r<1 0<r<1
We claim
sup {r”“\aém [} — 0. (108)
0<r<1 )

Suppose there are some 0 < r,,, < 1 and ¢ > 0 such that
o Hag, (rm)| > e (109)

We need to consider two cases:
(I) 7y, is bounded away from zero,

(I1) 7 N\ 0.

In either case, recall that a,, satisfies

(N~ Dap (1) paj, (r) _
r ﬂ’/‘ + tm""g

by (r) for 0<r<1 (110)

with ag, (1) = 0.

Case (I). Note that for all small positive E, we have sup |by,(r)] — 0. Fix Eg > 0 small. We have that
E<r<1

| ;:_:j; (:)5 | is bounded by some positive C' on Eq < r < 1. Using the regularity theorem of elliptic PDE, we

can say for all Ey > 0, there exist some 0 < A < 1 and a positive constant C; such that
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||at7n ||Cl’k(2]EU<T‘<1) < Cl

So by the compactness argument and the diagonal argument, there exists some subsequence (without re-

A
naming) a;,, such that a;,, — a in Cllo’f (0, 1]. Now suppose t,, converges to some ¢ € [0, 0] and so we can
pass to the limit in (110) to arrive at

(N —1)a'(r)  pa'(r)
r Br +tré

=0 0<r<l1 (111)

with a(1) = 0 when ¢ is finite. Also, in the case where ¢t = co the equation is

(VN = 1Da'(r)

r

—a"(r) — =0 0<r<1
with a(1) = 0. Note that we can pass to a subsequence of r,, such that r,, — ¢ € (0,1] and using the
convergence we have, we get 75 *|a’(r9)| > E. The kernel results we obtained for # = —p in Lemma 2.4

show that this kernel is trivial and hence we have a contradiction.
Case (II). We first define

1
zm(r) =1 {a,, (rmr) —ag,, (rm)} for 0 <r < —

m

where z,,(1) = 0. We have
(N =1)a}, (rrm) pa; (rrm)
—ay, (rrm) — rr; BT e by (r7m) 0 < 17 < 1 (112)
so we get
o+1 o+1
710_5_2@2/ (’I”I’m) . (N* 1) (l; (TT’m) _ P, ’ (TT’m) - = Tzl—i-Qbm(,rrm).
r Br+tm(r ) (rm)&™
Thus
" (N = Dz (r) Pz (1) +2 1
- — - =100 (rrm) =: gm 0<r<— 113
() - S sy = () = () 0<r< o (113)
where z,,(1) = 0. Also note that we have
sup 17 2|gn(r)] = sup  (173) 7 2 by ()| = 0.
0<r<oo o<rr,<1
Considering the boundary condition and (109), we can write
am(1) =0, |z, (V)] =77 ay, (rm)l > €, and r7H 2, (r)] = (rrn) Ty, (rmr)| < 1. (114)

Since |W((r)51| is bounded, we can apply a similar argument as before and so we have {z,} is

a bounded sequence is C** away from the origin and infinity, thus there exists a subsequence (without
renaming) {zm }m such that z, converges to some z in C2. Now we can pass to the limit in (113). We
need to consider three cases depending on the limiting behavior of ¢, (r,, )™ !:

(i) tm(rm)*~" =0,

(ii) tm(rm)~ — t € (0, 00),

(iii) ¢ (rm)s~t — oco.
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Case (i): Assuming that t,,(7,,,)* "1 goes to zero, by passing the limit in equation (113), we get

(N =1)z'(r) _ p#'(r)

. Gr =0 0<r<o

72’”(7“) _

where z(1) = 0. Since away from the origin and infinity we have the C1** convergence, we can pass the limit
in (114). Thus we have

|2/(1)] > e, (115)

and
o2 (r)] < 1.

Since z(r) is in the required space, we can use the kernel results we obtained in the case of k = 0, and t = 0.
So we should have z(r) = 0 on 0 < r < co. But this is a contradiction with (115).

Case (ii): In this case, we can use a similar approach as case (i) and by passing the limit in equation (113),
we get

(N=D20) _p0) g

_z//(,,,)_ " ﬁ,r_’_t_

and so using the convergence we have obtained, we can pass to the limit in (114). Thus we have

|2/(1)] > e, (116)

and
ot (r)] < 1.

We again use the Lemma 2.4 in the case t # 0 where similarly gives us the result of z being zero. Thus have
the same contradiction as case (i).
Case (iii): When t,,(r,,)¢~! approaches infinity, we get

(V=12 (r)

—2"(r) — =0 0<r<oo
where z(1) = 0. We can use the result from Lemma 2.4 in the case of ¢ approaching infinity which stated
we should have z(r) = 0. Thus again we have a contradiction with (116).

The contradictions from these 3 cases prove that we have the estimate (106) where C is independent
of t. This can complete the result and thus we have shown that a; satisfies the equation and we have the
estimate independent of t. O

3. The non-linear theory

The goal in this chapter is to show that our nonlinear mapping T;(¢, ) is into and a contraction.
Thus by applying Banach’s Fixed Point Theorem we can obtain its fixed point and complete the proof of
Theorem 1.1. Before that, we need to show the estimates and the asymptotic results that we will need for
the main proof.
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3.1. Estimates

Lemma 3.1. Suppose 1 < p < 2. Then there exists some positive C such that for x,y,z € RN

||+ ylP — [a” — plz[P~2z - y| < Cly/P. (117)
|l +y[? —plz|P 2z -y — |z + 2P + plafPz - 2| <O (yP~" + 2P~ |y — 2. (118)
llz+ylP —lz+2P| <C(leP~" + |y~ + 1277 |y — 2. (119)

Proof. We skip the proof here. The proofs with all the details are available at [13]. O
8.2. Asymptotics

To prove Theorem 1.1, we will also need some asymptotics of w;. Note that we had

1

dy 1 -1
wi)= [ and i) =0 - .
) (tys + By) T (tre + pryr=t  (tré 4 pr)rt
This means that for 0 < r < 1, we have |w}(r)] < min{--2—, —L—} where Cs = —4—. This
rp—1 ¢p—1pN—1 Br—1
gives us o Hw,(r)| < min{C,g,#}. We should also note that for any positive ¢, we have
tp—1pN—-2—0
lim, o 77 w}(r) = —Cs. To show this, noting that o + 1 = p%l we can write that
_ .0+l __pno+1 —1 —1
lim 77w} (r) = lim ! — = lim — d — = lim — =——=—C3.
r—0 r—0 (t?"§ + ﬁr)ﬁ r—0 Tﬁ(t7’§71 + ﬁ)ﬁ r—0 (t’/’§71 + B)ﬁ Bﬁ

Also, away from zero, we can see that w;(r) and wj(r) converge uniformly to zero.
3.8. The fized point argument
We defined the nonlinear mapping T3 (p, ) = (&, 1&) via
—A@ = p|Vw|P T2 Vw - Vi = k()| Vw + VYIP + 1(¢) in Bi\{0},
—AY = p|Vw[P2Vw - V§ = ke (2)[Vw + Vl? + I(p) in Bi\{0}, (120)
p=1=0 on 0By,
where
I(Q) = [Vw + V([P = [Vul” — p|Vw|P~*Vuw - V.
So for R > 0, we define the space Fp as

Fri={(p, ) € X x X :lpllx, [¢]lx < R}

We will show that T} is a contraction on Fg for suitable R and ¢. Also, note that on this space we have

10, ¥)llxxx = llellx + 9]l (121)
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Lemma 3.2. To show that our mapping Ty is into, we need to show that for all (p,v) € Fgr, we have
Ti(p, ) € Fr. We know that by (121), we have

1T (0, ) lxxx = [1(@, ) xxx = 18]lx + [[¥]|x-

First we set the right hand side of (120) to be Hi(¢) and Hs(p) as Hi(¢) = Jy() + Q¢(1)) and Hz(p) =
Ii(¢) + Ki(p) where

Je(¥) = |Vwy + VY|P — |[Vw|? — p|Vwe P> Vw Ve,  and  Qu(¢) = k1 |Vw, + Vobl?,
Li(p) == |Vw, + Vp|? — [Vw|P —p|th\p’2thV<p, and Ki(p) = ko|Vws + Vo|P.

To get the result we need, we should prove two statements for both Hy(v) and Hs(p). First we state them
for Hyi(p).

1. There is some positive constant C such that for R € (0,1),0<d <1,t>1, and ¥ € Bgp C X one has

1
\V4 YV |P < C| RP k 2 .
|51 |Vwe + Vip|Plly < ( + |jl<1[’6| 1(2)] + tﬁd(Nl)pG’Q)

2. There is some positive constant C' such that for allt >1,0< R <1 and ) € Br one has
[IVw + VY|P — [Vwy|P — p| V[P Vw, Vip|ly < CRP.

Proof. Fix R, and 1 as in the hypothesis and C' would be a constant independent of these parameters. We
have the estimates

(lz|7*HVep(x))? < RP and  (|2|7"HVw(2)])P < C. (122)
First note that we have:

1Qi@)lly < C sup || 22| =P |y | (o] [Vawe|)” + (2] [VD)P).

0<|z|<1

We know that U—i—2—(0—i—1)p:%(1—}9)4—2—]9:07 thus we get

1Q:(W)lly <C sup [r1|(|2]77H [V} + sup |ra|(J2]7FH[Ve[)P.
0<]z|<1 0<|z|<1

d
We saw that wy(r) = fl Y

—, SO
" (tyE + By) T

N\P
1)y < sup |m|(|x|°'+1<t|xf+5|x|>f“) T osup (el TP

0<|z|<1 0<|z|<1

and since 0 + 1 = we get

1
p—1’

=
1Q:()lly < sup [mal(tlz[*~ +8)"" + sup [w|(|2[7T V)P
0<|z|<1 0<|z|<1
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Fix 0 < § < 1. We have k1 (x), and ka(z) are positive continuous functions such that x1(0) = k2(0) = 0. We

write the sup |rq(2)|(t|z|57! + B)P;’pl+ sup |k1(x)|(|z||Vp|)P as a supremum over Bs and § < |z| < 1
0<|z|<1 0<|z|<1
and this gives us

1
P
1Q: )y < c(R +suplea)| + e ) (123)

For Ji(v), we apply the estimate (117) where we set = Vw; and y = V. So we get

1:@)lly < sup |27 |VyP < sup (|27 V)P < ORP. (124)
0

<|z|<1 0<|z|<1

By (123) and (124) we can deduce

1
/g .
1Hi (W) |ly < C’(R +sgf\/<;1|(x) + tﬁm({_l)ﬁ). O

We now prove similar statements for Ha(yp).

1. There is some positive constant C such that for R € (0,1), 0 <d <1,t > 1, and p € Bgr one has

1
Ko|Vwy + VolP|ly < C[ RP +sup |k (2)| + — .
bl + Sy < 08 + slea@l + et

2. There is some positive constant C' such that for allt > 1,0 < R <1 and ¢ € Bg one has

||[Vw; + V|? — |[Vw P — p|Vw|P2Vw:Vyl|ly < CRP.

Proof. Fix R, and ¢ as in the hypothesis and C' would be a constant independent of these parameters and
we again use the estimates (|z|7 1|V (z)|)P < RP, and (|z|7 T Vw:(r)|)? < C. First note that we have:

[k ()lly < ¢ S‘qu\@"I"“va\‘("“)plﬁzl((Ix\”lIth\)p + (|27 Vel)P).
<|z|<

Since 0+ 1 = p%l and by definition of w; and 0 + 2 — (o + 1)p = 0, thus we get:

—P_
Ike(@)lly < sup [wo|(tle|*™ +8)"" + sup |ra|(Jz|7 T Vi])P.
0<|z|<1 0<|z|<1
Similarly, fix 0 < § < 1. We know that k1(z), ka(z) > 0 are continuous and £1(0) = k2(0) = 0. We write

the sup |ka(z)|(t|z|S? —l—ﬂ)p_—‘pl + sup |r2(z)|(Jz||Ve|)P as a supremum over Bs and § < |z| < 1.
0<|z|<1 0<|z|<1
Noting that (§ —1);55 > 0, we get

1
P -
ke(0)ly < C(R +supla(a)]| + t#|5|<5—1>p%>' (125)

For I;(y), we can apply (117), where we set x = Vw, and y = V. So we get:

Ie(@)lly < sup |27 |Vel? < sup (|z|7|Vy|)” < CRP.
0<|z|<1 0<]z|<1
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By (125), we obtain

1
D S
[H2(p)|ly < C(R + S§§|/<;2|(x) + P PG ) O

Lemma 3.3. To show our mapping is a contraction, we are going to show that if we have 0 < R < 1, 0 <
0 <1, t>1, and v;,; € Br and we set Ty(p;, ;) = (gﬁi,d;i), there exists some C > 0 such that

_ 1
(T (p2s2) — Ti(p1,91) | xxx < C{RP™" + Sglp{|/€1| + |ko|} + Py Hi(wa, ¥2) = (01, 91) [ xxx-
5
Proof. First note that we have:

T2 (02, %2) — Te(p1, 1) | xxx =I1(@2,P2) — (b1, %1)llxxx = [[($2 — ¢1), (P2 — ¥1)] [ xxx
= [l¢1 — @allx + U1 — P2 x-

We set the right hand sides of (120) to be H;(¢) and Ha(yp) where

Hy(¢) = |Vw; + V[P — |Vwy|P — p|Vw P2 Vw, Vap + k1| Vw; + Vap|?,
Hy(p) == |Vw, + V|P — |[Vw|? — p|Vw|P"2Vw Vo + ka|Vw; + VP

For Hy (%) let us define I; and K; such that
Hy(2) — Hi(y1) = I +
where
L (Y1,%2) = |Vwy + Vipa|? — p| V[P~ Vw, Vipy — [Vw, 4+ Vb [P + p| V[P >V, Vi (126)
and
k1 (1, 92) = k1 (2)(|[Vwy + Vipo P — [V + Vi ). (127)
Similarly, we write Ha(p) as
Hy(p2) — Ha(p1) = J2 + Q2
where

(g1, 02) = |Vws + Vo P — p|Vw|P2Vw Vs — |Vw; + Vi [P + p| Vs [P~2Vw; Vi,
Q2(p1, 2) = ra(x)(|Vwi + Vipa|? — [Vw, + Vipr |[P).

We prove two claims for both H; and Hs to show that T} is a contraction. First we state and prove our
claims for Hy (¢).

Claim 1. There exists a positive constant C such that forO< R<1,t>0 and p;,v; € Br we have

N 1
sup || |k1 (1, 102)| < C (sup ki(z) + pyvani 2RP71)|[(p2,¥2) — (o1, ¥1) [ xxx-
0<|z|<1 Bj to
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Claim 2. There exists a positive constant C such that for 0 < R < 1, t > 1, and ¢;,v; € Br we have:

S‘U& |72 1 (W1, 1b2)| < C2RP7[ (2, 902) — (1,%1) | x x x-
0<|z|<L1

Proof of Claim 1. (We will skip some details of the following proof. The proof along with all the details is
available at [13]) We use (5) and (127) and apply (119) where we take © = Vwy, y = Vip2 and z = Vi),
Also we note that (p — 1)(c + 1) = 1, thus we have:

sup 2|7 k1 (Y1, 92)| < sup x|k (@) ((IVwr + Ve P — [V, + Vi [P))

0<|z|<1 0<|z|<1
k1(x) 1
<C: s —— +2C4 RP — )
< 10<|1;p<1<t|:v|5—1 B 1 1431(1:)) lh2 — 1] x
Let 0 < < 1, so we find that:
_ ki(w) k1(x) k1(x) C
sup sup sup —7—— < Csup ki(x) + —— 128
ocloj<1tlzETT+ B = 0<|ac|<5t|ﬂf\5 + 8 5<|z|g1t|f\5_1 + 8 Bs v e (128)
Thus, there exists a positive constant C such that
sup |27 ki (¥1,2)] < C (sup w1 (z) + 2RV + 7= 1)H¢2 V1l x-
0<]e|<1 Bs to
We should note that
2 = P1llx < ([(02,%2) — (1, V1) [ xxx = b2 — U1llx + [lp2 — @1l x (129)
which means
N 1
sup [z]7 3|k (11, h2)| < C (sup k1 (x) + 2RP™! + ﬁ)”(@m%) —(p1,1)llxxx. O (130)
0<|z|<1 Bs t
Proof of Claim 2. We apply (119) where we set Vw; =z, Vipy =y, Vi1 = z, thus we have
sup |27 2|1 (¢, 92)] < C sup ((J2] TV [P + (2] [V [P [ — ¢ x
0<|z|<1 0<|z|<1
< C2RP™lgha — 1|
Thus by (129), we can write
sup |z|7 2|1 (1, 2)| < C2RP|(2,2) — (01, ¢1) [ x xx - (131)
0<]z|<1
By (130) and (131), we can deduce that
2 = drllxc < € (sup m(@) + o=y + 2R (g2, v2) = (p1,0)xx. O (132)
s

We now state similar claims for Ha(p).
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Claim 3. There exists a positive constant C such that for0O< R<1,t>0 and ¢;,¥; € Bgr

sup [2]77?|Qa( 1, 2)] < C (sup ma(x) + 2R + o1
0<lz|<1 B

M(@2,92) = (p1,91) | xxx-

Claim 4. There exists C > 0 such that for 0 < R < 1, t > 1, and ¢;,v; € Br we have:

sup |z]72]Ja (02, ¢2)| < C2RP7 (02, 12) — (01, ¥1) | x xx-
0<|z|<1

Proof of Claim 3. With a similar proof to (130), we can apply (119) where we set z = Vw;, y = Vibg and
z = V11 and we have:

sup |2]7F[Q1(p1,02)| < sup || 2 ha(2) (IVwe + Vol — [ Ve + Veor )

0<|z|<1 0<|z|<1
Ka(x) 1
<Cj sup (7 +2C1 RP™ ko(x > P2 — 1 x-
o<le[<1 \t|Z[*71 + B )]

Similar to (128), by letting 0 < < 1, we have:

K2 () C
sup —————— < C sup ka(x) + —F/——.
o<lz|<1tlz¢T + 8 B; (=) + f5e1

Thus, by (129) there exists a positive constant C' such that

sup [2]7F2|Q1 (1, p2)| < C (sup wa(z) +2RP~! +

o<lol<1 s e (@2, ¥2) — (1, ¥)llxxx. O (133)

Proof of Claim 4. Similar to the proof of (131), we can apply (118) where we take Vw; = z, Vi =
Yy, Vi1 = z, and thus we have

sup 2|7 J1 (o1, 42) < C sup (12 Va1 + (j2] TV Vi P o2 — enllx
0<|z|<1 0<|z|<1
< C2R" Y|z — ¢ulx-
So by (129), we can write

S|UF< 2|72 1 (1, 02)| < C2RP™H (02, 902) — (1, ¥1) [ xxx - (134)
0<|z|<1

By (133) and (134), we can deduce that

A A 1 _
@2 —@1llx < C (S;lp Ka(x) + Py +2RP7Y) [ (92, ¥2) — (01, ¥1)] xxx - (135)
S
So by (132) and (135), we have

1T (02, ¥a) — Ti(p1,91) || xxx = |$1 — Pallx + |91 — el x

1
< C(S}Blp{fﬁ + Ko} + 2RV 4 t(sg—_l)H(mﬂ/&) —(p1,¥1)llxxx. O
S5
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8.4. Proof of the main theorem

Proof of Theorem 1.1. We can now complete the proof of our main theorem. Recall that we want to find
some ¢ and 1 which satisfy (8) such that u(xz) = w(x) + ¢(x), and v(x) = w(x) + ¥ (x) satisfy equation
(4). We will show that the mapping T} is a contraction on Fg for suitable 0 < R < 1, and large ¢.
Into.Let 0 < R<1,0<d<1,t>1,and ¢,9 € Bg. Set Ty(¢,1) = ($,7). Then by Lemma 3.2, there
exists some C' > 0 (independent of the parameters) such that

- 1
ITi o)l = 162 <C( R 4 sup(lal (@) + el @) + W)

Hence, for (¢, 1[)) to be in Fg, it is sufficient to have

<R (136)

1
P R —
C(R —&-sgfﬂml(:v) + [K2(z)[} + tpp1|<5|(51)1)'3) <

Contraction. Let 0 < R < 1,0 < d < 1, and ¢t > 1, also @;,¥; € Bg. Set Ti(pi, ;) = (cﬁl,zﬁi) Then by
Lemma 3.3 we have

A A 1
(b2, %2) — (@1, 91) [l xxx < C(Sgp(m + Kg) +2RPT 4 W—,l)H(%v%) — (1, 91) Ix xx-

Hence, for T; to be a contraction, it is sufficient to have

C(sup(k1 + k2) + 2RP + ) < % (137)

Bs toé—1

We now choose the parameters. Note that we can satisfy both (136) and (137) by first taking R > 0
sufficiently small, similarly we take § > 0 sufficiently small and then we take ¢ large enough. Thus we obtain
that T} is into and a contraction. We can now apply Banach’s Fixed Point Theorem to find the fixed point
(p, 1) of Ty on Fr and hence (¢, 1) satisfies (8). Thus u; = u(z) = wi(x)+e(x), and vy = v(x) = w(z)+(x)
are solutions of (4) provided (¢, 1) satisfies (8). We need to verify that we can obtain a nonzero positive
solution. Note that we have

|x|"+1|Vut(x)| > Ta+l‘w£(7“)| _ ‘:I:|0+1|V30(-r)| > r0+1‘w2(7“)| — R,

2|7 Vg ()| > 7o w) (r)| — |2|7 T Vb (z)] > 7wl (r)| — R

since ¢,1 € Bg. Recall that for all positive ¢, we have (lim,_07° " w}(r) = —Cjs) and hence by taking
R > 0 sufficiently small, we can see u;, v; are nonzero when for some small positive €, we have 0 < |z| < e.
We want to show that both u; and v; are positive on B;\{0}. For all positive ¢, in the equation of (5), we
can find some z € (0,1) such that we have ty*~! < 1 for any y that satisfies 0 < y < 2. Since we have
ﬁ—l—lza, we get:

1 1 ) ]
) Gy P S B S N B
" / (tys + By) 7T ’ / (y(tys—1+B))7—* y / Y71 (1+ B)5—T [ oy ]7 [ —]

Thus there exists some positive constant C' = Cg,,y such that for all 0 <r < z, we have

r o

r7w; > C(1 - (;) )
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and we know u; = wy+¢, and v; = w; +1 where @, 1 are in X. Thus near the origin when r goes to zero, we
see that u, vy are positive. Now for € < |x| < 1, note that since k; > 0, we have —Au; = (1+k1(2))|Vv|P > 0,
and —Av = (1 + k2(2))|VulP > 0. Thus, by applying the maximum principle, we can say that us, v; are
both positive on € < |z| < 1. It verifies that we have nonzero positive solutions. O
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